Solid-state microwave assisted batch and flow synthesis, and life cycle assessment, of titanium containing UVM-7 mesoporous silica

IF 4.8 3区 材料科学 Q1 CHEMISTRY, APPLIED
Cristina Rodríguez-Carrillo , Miriam Benítez , Marta González-Fernández , Ruth de los Reyes , Sonia Murcia , Jamal El Haskouri , Pedro Amorós , Jose V. Ros-Lis
{"title":"Solid-state microwave assisted batch and flow synthesis, and life cycle assessment, of titanium containing UVM-7 mesoporous silica","authors":"Cristina Rodríguez-Carrillo ,&nbsp;Miriam Benítez ,&nbsp;Marta González-Fernández ,&nbsp;Ruth de los Reyes ,&nbsp;Sonia Murcia ,&nbsp;Jamal El Haskouri ,&nbsp;Pedro Amorós ,&nbsp;Jose V. Ros-Lis","doi":"10.1016/j.micromeso.2024.113314","DOIUrl":null,"url":null,"abstract":"<div><p>UVM-7 is a bimodal mesoporous silica material that can be prepared in a short time with microwave assisted synthesis (MAS). It is prepared following the atrane route, that allows the synthesis of mixed silicas including other elements with homogeneous distribution. We report herein the preparation of Ti-UVM-7 with using the atrane route in combination with MAS with solid-state generators. The synthesis has been optimized and scaled-up in batch. Also, the flow synthesis has been developed. These materials have not been prepared before using solid-state generators, nor microwave-assisted flow chemistry. The materials have been characterized by XRD, N<sub>2</sub> adsorption-desorption, TEM, EDX, Raman, and Z potential. The materials can be prepared in less than 10 min with a Si/Ti ratio of up to 3.8, and a homogeneous Ti distribution within the UVM-7 silica structure. Scaled-up synthesis produces 33 g of Ti-UVM-7 in 10 min and 12 g h<sup>−1</sup> in batch and flow synthesis respectively. The optical properties and sun protection factor of the resulting materials were studied. The band gap decreases as titanium concentration increases, reaching 4.1 eV for the highest concentration. Life Cycle Assessment confirms a strong reduction in the impact derived from the scale-up with similar values of approximately 10 points in the single score for the preparation of 1 kg of Ti-UVM-7.</p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"380 ","pages":"Article 113314"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1387181124003366/pdfft?md5=e126b1b13c3b610137345f4edcc91d06&pid=1-s2.0-S1387181124003366-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003366","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

UVM-7 is a bimodal mesoporous silica material that can be prepared in a short time with microwave assisted synthesis (MAS). It is prepared following the atrane route, that allows the synthesis of mixed silicas including other elements with homogeneous distribution. We report herein the preparation of Ti-UVM-7 with using the atrane route in combination with MAS with solid-state generators. The synthesis has been optimized and scaled-up in batch. Also, the flow synthesis has been developed. These materials have not been prepared before using solid-state generators, nor microwave-assisted flow chemistry. The materials have been characterized by XRD, N2 adsorption-desorption, TEM, EDX, Raman, and Z potential. The materials can be prepared in less than 10 min with a Si/Ti ratio of up to 3.8, and a homogeneous Ti distribution within the UVM-7 silica structure. Scaled-up synthesis produces 33 g of Ti-UVM-7 in 10 min and 12 g h−1 in batch and flow synthesis respectively. The optical properties and sun protection factor of the resulting materials were studied. The band gap decreases as titanium concentration increases, reaching 4.1 eV for the highest concentration. Life Cycle Assessment confirms a strong reduction in the impact derived from the scale-up with similar values of approximately 10 points in the single score for the preparation of 1 kg of Ti-UVM-7.

Abstract Image

含钛 UVM-7 介孔二氧化硅的固态微波辅助批量和流动合成及生命周期评估
UVM-7 是一种双峰介孔二氧化硅材料,可通过微波辅助合成(MAS)在短时间内制备。它是通过阿特兰路线制备的,该路线允许合成混合硅,包括均匀分布的其他元素。我们在此报告使用阿特兰路线结合 MAS 与固态发生器制备 Ti-UVM-7 的情况。我们对该合成方法进行了优化和批量放大。此外,还开发了流动合成法。这些材料以前从未使用固态发生器或微波辅助流动化学法制备过。这些材料已通过 XRD、N2 吸附-解吸、TEM、EDX、拉曼和 Z 电位进行了表征。这种材料可在 10 分钟内制备完成,硅/钛比高达 3.8,钛在 UVM-7 二氧化硅结构中分布均匀。扩大合成规模后,批量合成和流动合成分别在 10 分钟和 12 克/小时-1 的时间内制备出 33 克 Ti-UVM-7 材料。研究了所得材料的光学特性和防晒系数。带隙随着钛浓度的增加而减小,最高浓度达到 4.1 eV。生命周期评估证实,规模化生产对环境的影响大大降低,制备 1 千克 Ti-UVM-7 的单项评分值约为 10 分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microporous and Mesoporous Materials
Microporous and Mesoporous Materials 化学-材料科学:综合
CiteScore
10.70
自引率
5.80%
发文量
649
审稿时长
26 days
期刊介绍: Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal. Topics which are particularly of interest include: All aspects of natural microporous and mesoporous solids The synthesis of crystalline or amorphous porous materials The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials Adsorption (and other separation techniques) using microporous or mesoporous adsorbents Catalysis by microporous and mesoporous materials Host/guest interactions Theoretical chemistry and modelling of host/guest interactions All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信