Automated data collection tool for real-world cohort studies of chronic hepatitis B: Leveraging OCR and NLP technologies for improved efficiency

IF 2.9 Q2 INFECTIOUS DISEASES
Xiaomei Zhou , Tao Zeng , Yibo Zhang , Yingying Liao , Jaime Smith , Lin Zhang , Chao Wang , Qinghai Li , Dongbo Wu , Yutian Chong , Xinhua Li
{"title":"Automated data collection tool for real-world cohort studies of chronic hepatitis B: Leveraging OCR and NLP technologies for improved efficiency","authors":"Xiaomei Zhou ,&nbsp;Tao Zeng ,&nbsp;Yibo Zhang ,&nbsp;Yingying Liao ,&nbsp;Jaime Smith ,&nbsp;Lin Zhang ,&nbsp;Chao Wang ,&nbsp;Qinghai Li ,&nbsp;Dongbo Wu ,&nbsp;Yutian Chong ,&nbsp;Xinhua Li","doi":"10.1016/j.nmni.2024.101469","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Collecting and standardizing clinical research data is a very tedious task. This study is to develop an intelligent data collection tool, named CHB-EDC, for real-world cohort studies of chronic hepatitis B (CHB), which can assist in standardized and efficient data collection.</p></div><div><h3>Methods</h3><p>CHB_EDC is capable of automatically processing various formats of data, including raw data in image format, using internationally recognized data standards, OCR, and NLP models. It can automatically populate the data into eCRFs designed in the REDCap system, supporting the integration of patient data from electronic medical record systems through commonly used web application interfaces. This tool enables intelligent extraction and aggregation of data, as well as secure and anonymous data sharing.</p></div><div><h3>Results</h3><p>For non-electronic data collection, the average accuracy of manual collection was 98.65 %, with an average time of 63.64 min to collect information for one patient. The average accuracy CHB-EDC was 98.66 %, with an average time of 3.57 min to collect information for one patient. In the same data collection task, CHB-EDC achieved a comparable average accuracy to manual collection. However, in terms of time, CHB-EDC significantly outperformed manual collection (p &lt; 0.05). Our research has significantly reduced the required collection time and lowered the cost of data collection while ensuring accuracy.</p></div><div><h3>Conclusion</h3><p>The tool has significantly improved the efficiency of data collection while ensuring accuracy, enabling standardized collection of real-world data.</p></div>","PeriodicalId":38074,"journal":{"name":"New Microbes and New Infections","volume":"62 ","pages":"Article 101469"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2052297524002531/pdfft?md5=d192ae7ffffc801b31fe3c79f37b552b&pid=1-s2.0-S2052297524002531-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Microbes and New Infections","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2052297524002531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Collecting and standardizing clinical research data is a very tedious task. This study is to develop an intelligent data collection tool, named CHB-EDC, for real-world cohort studies of chronic hepatitis B (CHB), which can assist in standardized and efficient data collection.

Methods

CHB_EDC is capable of automatically processing various formats of data, including raw data in image format, using internationally recognized data standards, OCR, and NLP models. It can automatically populate the data into eCRFs designed in the REDCap system, supporting the integration of patient data from electronic medical record systems through commonly used web application interfaces. This tool enables intelligent extraction and aggregation of data, as well as secure and anonymous data sharing.

Results

For non-electronic data collection, the average accuracy of manual collection was 98.65 %, with an average time of 63.64 min to collect information for one patient. The average accuracy CHB-EDC was 98.66 %, with an average time of 3.57 min to collect information for one patient. In the same data collection task, CHB-EDC achieved a comparable average accuracy to manual collection. However, in terms of time, CHB-EDC significantly outperformed manual collection (p < 0.05). Our research has significantly reduced the required collection time and lowered the cost of data collection while ensuring accuracy.

Conclusion

The tool has significantly improved the efficiency of data collection while ensuring accuracy, enabling standardized collection of real-world data.

用于真实世界慢性乙型肝炎队列研究的自动数据收集工具:利用 OCR 和 NLP 技术提高效率
背景收集和标准化临床研究数据是一项非常繁琐的工作。本研究旨在为慢性乙型肝炎(CHB)的真实世界队列研究开发一种名为 CHB-EDC 的智能数据收集工具,该工具可帮助实现标准化和高效的数据收集。CHB_EDC 能够使用国际公认的数据标准、OCR 和 NLP 模型自动处理各种格式的数据,包括图像格式的原始数据。它能将数据自动填充到 REDCap 系统设计的 eCRF 中,支持通过常用的网络应用程序接口整合电子病历系统中的患者数据。结果对于非电子数据收集,人工收集的平均准确率为 98.65%,收集一名患者信息的平均时间为 63.64 分钟。CHB-EDC的平均准确率为98.66%,为一名患者收集信息的平均时间为3.57分钟。在相同的数据收集任务中,CHB-EDC 的平均准确率与人工收集相当。然而,在时间方面,CHB-EDC 明显优于人工收集(p < 0.05)。我们的研究在确保准确性的同时,大大缩短了所需的收集时间,降低了数据收集成本。结论该工具在确保准确性的同时,大大提高了数据收集的效率,实现了真实世界数据的标准化收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Microbes and New Infections
New Microbes and New Infections Medicine-Infectious Diseases
CiteScore
10.00
自引率
2.50%
发文量
91
审稿时长
114 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信