{"title":"Enhancing pilot vigilance assessment: The role of flight data and continuous performance test in detecting random attention loss in short IFR flights","authors":"Alireza Ghaderi, Fariborz Saghafi","doi":"10.1016/j.jairtraman.2024.102673","DOIUrl":null,"url":null,"abstract":"<div><p>Situational awareness (SA) and fatigue management are crucial aspects of aviation safety, particularly during demanding flight phases. This study introduces an innovative approach employing flight data, machine learning, and Continuous Performance Test (CPT) metrics to predict pilot performance and SA during instrument approaches under Instrument Meteorological Conditions (IMC). Data were collected from over 10 pilots across more than 40 flights in a high-fidelity Cessna 172 analog flight simulator.</p><p>Significant correlations were observed between dynamic cognitive performance parameters and the exceedance shape factor, a novel measure of pilot sustained attention introduced in this research. Key variables identified through correlation analysis included variability, interstimulus change, and reaction time standard deviation.</p><p>Importantly, commission scores and reaction time standard deviation emerged as key predictors in the machine learning model, specifically the Optimizable Gaussian Process Regression (GPR) model with a radial basis function kernel. The model achieved a validation R-squared of 0.90 and a test R-squared of 0.70. These systems could incorporate additional data sources, such as eye-tracking and scan pattern analysis, for a better assessment of pilot SA and fatigue levels. While post-flight measurements are inherently reactive, they are effective for monitoring the degradation of pilot CPT scores after each leg of high-frequency, short-duration flights.</p><p>Notable limitations include the need to understand individual cognitive differences among pilots, such as age, experience, and cognitive style. The predictive model also requires validation in actual flight conditions to determine its ecological validity. Future research should aim to address these limitations, generalize the findings, and integrate CPT data with other sensor inputs to provide a more comprehensive understanding of pilot performance.</p></div>","PeriodicalId":14925,"journal":{"name":"Journal of Air Transport Management","volume":"120 ","pages":"Article 102673"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Air Transport Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969699724001388","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Situational awareness (SA) and fatigue management are crucial aspects of aviation safety, particularly during demanding flight phases. This study introduces an innovative approach employing flight data, machine learning, and Continuous Performance Test (CPT) metrics to predict pilot performance and SA during instrument approaches under Instrument Meteorological Conditions (IMC). Data were collected from over 10 pilots across more than 40 flights in a high-fidelity Cessna 172 analog flight simulator.
Significant correlations were observed between dynamic cognitive performance parameters and the exceedance shape factor, a novel measure of pilot sustained attention introduced in this research. Key variables identified through correlation analysis included variability, interstimulus change, and reaction time standard deviation.
Importantly, commission scores and reaction time standard deviation emerged as key predictors in the machine learning model, specifically the Optimizable Gaussian Process Regression (GPR) model with a radial basis function kernel. The model achieved a validation R-squared of 0.90 and a test R-squared of 0.70. These systems could incorporate additional data sources, such as eye-tracking and scan pattern analysis, for a better assessment of pilot SA and fatigue levels. While post-flight measurements are inherently reactive, they are effective for monitoring the degradation of pilot CPT scores after each leg of high-frequency, short-duration flights.
Notable limitations include the need to understand individual cognitive differences among pilots, such as age, experience, and cognitive style. The predictive model also requires validation in actual flight conditions to determine its ecological validity. Future research should aim to address these limitations, generalize the findings, and integrate CPT data with other sensor inputs to provide a more comprehensive understanding of pilot performance.
期刊介绍:
The Journal of Air Transport Management (JATM) sets out to address, through high quality research articles and authoritative commentary, the major economic, management and policy issues facing the air transport industry today. It offers practitioners and academics an international and dynamic forum for analysis and discussion of these issues, linking research and practice and stimulating interaction between the two. The refereed papers in the journal cover all the major sectors of the industry (airlines, airports, air traffic management) as well as related areas such as tourism management and logistics. Papers are blind reviewed, normally by two referees, chosen for their specialist knowledge. The journal provides independent, original and rigorous analysis in the areas of: • Policy, regulation and law • Strategy • Operations • Marketing • Economics and finance • Sustainability