Detection and automatic identification of loess sinkholes from the perspective of LiDAR point clouds and deep learning algorithm

IF 3.1 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Zongda Jiang , Sheng Hu , Hao Deng , Ninglian Wang , Fanyu Zhang , Lin Wang , Songbai Wu , Xingang Wang , Zhengwen Cao , Yixian Chen , Sisi Li
{"title":"Detection and automatic identification of loess sinkholes from the perspective of LiDAR point clouds and deep learning algorithm","authors":"Zongda Jiang ,&nbsp;Sheng Hu ,&nbsp;Hao Deng ,&nbsp;Ninglian Wang ,&nbsp;Fanyu Zhang ,&nbsp;Lin Wang ,&nbsp;Songbai Wu ,&nbsp;Xingang Wang ,&nbsp;Zhengwen Cao ,&nbsp;Yixian Chen ,&nbsp;Sisi Li","doi":"10.1016/j.geomorph.2024.109404","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, the detection and automatic identification of the three-dimensional structure of sinkholes is extremely lacking, which has resulted in significant gaps in sinkholes mapping, soil erosion estimation and morphological studies. In this study, we discovered 249 sinkholes on a river terrace (about 2050 m long and 100 m wide) in a small watershed of Chinese Loess Plateau. Subsequently, we used the unmanned aircraft systems (UAS) and handheld laser scanner (HLS) to investigate these loess sinkholes in detail. We introduced the PointNet ++ deep learning model to train the point cloud dataset for 50 epochs and then selected the best model. In order to evaluate the identification accuracy and transferability of the model, we input point clouds of the unknown prediction area into the trained model to predict the sinkhole point clouds. The trained model exhibits excellent transferability and can effectively identify the sinkhole point clouds in the predicted area (OA = 0.935, IoU (Sinkhole) = 0.662, mIoU = 0.794, AUC = 0.966, Recognition rate = 82.46 %), and even sinkholes with complex connected structures can be accurately identified. This study provides a new perspective for future large-area LiDAR surveys, mapping, and assessment of sinkholes.</p></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"465 ","pages":"Article 109404"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X24003544","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, the detection and automatic identification of the three-dimensional structure of sinkholes is extremely lacking, which has resulted in significant gaps in sinkholes mapping, soil erosion estimation and morphological studies. In this study, we discovered 249 sinkholes on a river terrace (about 2050 m long and 100 m wide) in a small watershed of Chinese Loess Plateau. Subsequently, we used the unmanned aircraft systems (UAS) and handheld laser scanner (HLS) to investigate these loess sinkholes in detail. We introduced the PointNet ++ deep learning model to train the point cloud dataset for 50 epochs and then selected the best model. In order to evaluate the identification accuracy and transferability of the model, we input point clouds of the unknown prediction area into the trained model to predict the sinkhole point clouds. The trained model exhibits excellent transferability and can effectively identify the sinkhole point clouds in the predicted area (OA = 0.935, IoU (Sinkhole) = 0.662, mIoU = 0.794, AUC = 0.966, Recognition rate = 82.46 %), and even sinkholes with complex connected structures can be accurately identified. This study provides a new perspective for future large-area LiDAR surveys, mapping, and assessment of sinkholes.

从激光雷达点云和深度学习算法的角度检测和自动识别黄土沉陷区
目前,对天坑三维结构的探测和自动识别极为缺乏,导致在天坑绘图、水土流失估算和形态研究方面存在重大空白。在本研究中,我们在中国黄土高原的一个小流域的河流阶地(长约 2050 米,宽约 100 米)上发现了 249 个天坑。随后,我们使用无人机系统(UAS)和手持激光扫描仪(HLS)对这些黄土沉陷坑进行了详细调查。我们引入了 PointNet ++ 深度学习模型,对点云数据集进行了 50 个 epoch 的训练,然后选出了最佳模型。为了评估模型的识别精度和可迁移性,我们将未知预测区域的点云输入训练好的模型,以预测天坑点云。训练后的模型表现出良好的可移植性,能够有效识别预测区域内的天坑点云(OA = 0.935,IoU (Sinkhole) = 0.662,mIoU = 0.794,AUC = 0.966,识别率 = 82.46 %),即使是具有复杂连接结构的天坑也能准确识别。这项研究为未来大面积激光雷达勘测、制图和天坑评估提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geomorphology
Geomorphology 地学-地球科学综合
CiteScore
8.00
自引率
10.30%
发文量
309
审稿时长
3.4 months
期刊介绍: Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信