Boosting CO2 selectivity by mono- and dicarboxylate-based ionic liquids impregnation into ZIF-8 for post-combustion separation

{"title":"Boosting CO2 selectivity by mono- and dicarboxylate-based ionic liquids impregnation into ZIF-8 for post-combustion separation","authors":"","doi":"10.1016/j.ccst.2024.100282","DOIUrl":null,"url":null,"abstract":"<div><p>Post-combustion carbon dioxide (CO<sub>2</sub>) capture/separation is considered one of the main ways to minimize the impact of global warming caused by this greenhouse gas. This work used eight mono- and dicarboxylate-based ionic liquids (ILs) to impregnate metal-organic framework (MOF) ZIF-8. This anionic effect was studied for these mostly unreported IL@MOF composites to determine its impact on gas sorption and selectivity performance. Characterization results confirmed IL impregnation into the structure of ZIF-8, along with the conservation of microporosity and crystallinity in composites. Sorption-desorption equilibrium measurements were performed, and CO<sub>2</sub> and nitrogen (N<sub>2</sub>) isotherms were obtained at 303 K for ZIF-8 and IL@ZIF-8 composites. At 0.15 bar, the dicarboxylate-based composite [C<sub>2</sub>MIM]<sub>2</sub>[Glu]@ZIF-8 showed the highest CO<sub>2</sub> gas sorption, showing 50 % more sorption capacity than the best monocarboxylate-base composites at this pressure. Dicarboxylate-based composites also showed remarkable N<sub>2</sub> sorption in the low-pressure range. The ideal CO<sub>2</sub>/N<sub>2</sub> selectivity for a typical post-combustion composition was calculated, and a trend regarding the anionic carbon chain size was observed. The composite [C<sub>2</sub>MIM][Cap]@ZIF-8 showed nearly five times more selectivity than the pristine ZIF-8 at 1 bar of total pressure. Dicarboxylate-based composites, given their low-pressure high N<sub>2</sub> sorption capacity, were not as selective as their respective monocarboxylate-based IL@ZIF-8 materials with the same carbon chain size.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000940/pdfft?md5=51df7ab5a594eddd1a6cbd534fe44652&pid=1-s2.0-S2772656824000940-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Post-combustion carbon dioxide (CO2) capture/separation is considered one of the main ways to minimize the impact of global warming caused by this greenhouse gas. This work used eight mono- and dicarboxylate-based ionic liquids (ILs) to impregnate metal-organic framework (MOF) ZIF-8. This anionic effect was studied for these mostly unreported IL@MOF composites to determine its impact on gas sorption and selectivity performance. Characterization results confirmed IL impregnation into the structure of ZIF-8, along with the conservation of microporosity and crystallinity in composites. Sorption-desorption equilibrium measurements were performed, and CO2 and nitrogen (N2) isotherms were obtained at 303 K for ZIF-8 and IL@ZIF-8 composites. At 0.15 bar, the dicarboxylate-based composite [C2MIM]2[Glu]@ZIF-8 showed the highest CO2 gas sorption, showing 50 % more sorption capacity than the best monocarboxylate-base composites at this pressure. Dicarboxylate-based composites also showed remarkable N2 sorption in the low-pressure range. The ideal CO2/N2 selectivity for a typical post-combustion composition was calculated, and a trend regarding the anionic carbon chain size was observed. The composite [C2MIM][Cap]@ZIF-8 showed nearly five times more selectivity than the pristine ZIF-8 at 1 bar of total pressure. Dicarboxylate-based composites, given their low-pressure high N2 sorption capacity, were not as selective as their respective monocarboxylate-based IL@ZIF-8 materials with the same carbon chain size.

Abstract Image

将一羧酸盐和二羧酸盐基离子液体浸渍到 ZIF-8 中,提高二氧化碳的选择性,用于燃烧后分离
燃烧后二氧化碳(CO2)捕获/分离被认为是最大限度减少这种温室气体对全球变暖影响的主要方法之一。这项研究使用了八种基于单羧酸盐和二羧酸盐的离子液体(IL)来浸渍金属有机框架(MOF)ZIF-8。对这些大部分未报道过的 IL@MOF 复合材料的阴离子效应进行了研究,以确定其对气体吸附和选择性性能的影响。表征结果证实了 IL 浸渍到了 ZIF-8 的结构中,同时复合材料中的微孔和结晶度也得到了保持。对 ZIF-8 和 IL@ZIF-8 复合材料进行了吸附-解吸平衡测量,并在 303 K 条件下获得了二氧化碳和氮(N2)等温线。在 0.15 巴的压力下,二羧酸盐基复合材料 [C2MIM]2[Glu]@ZIF-8 对二氧化碳气体的吸附能力最高,比该压力下最好的单羧酸盐基复合材料高出 50%。二羧酸盐基复合材料在低压范围内对 N2 的吸附效果也很显著。计算了典型燃烧后成分的理想 CO2/N2 选择性,并观察到阴离子碳链尺寸的变化趋势。在 1 巴的总压下,[C2MIM][Cap]@ZIF-8 复合材料的选择性比原始 ZIF-8 高出近五倍。基于二羧酸盐的复合材料具有低压高 N2 吸附能力,但其选择性不如具有相同碳链尺寸的基于单羧酸盐的 IL@ZIF-8 材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信