Yanying He , Yiming Li , Xianli Yang , Yingrui Liu , Haixiao Guo , Yufen Wang , Tingting Zhu , Yindong Tong , Bing-Jie Ni , Yiwen Liu
{"title":"Biodegradable microplastics aggravate greenhouse gas emissions from urban lake sediments more severely than conventional microplastics","authors":"Yanying He , Yiming Li , Xianli Yang , Yingrui Liu , Haixiao Guo , Yufen Wang , Tingting Zhu , Yindong Tong , Bing-Jie Ni , Yiwen Liu","doi":"10.1016/j.watres.2024.122334","DOIUrl":null,"url":null,"abstract":"<div><p>Freshwater ecosystems, such as urban lake sediments, have been identified as important sources of greenhouse gases (GHGs) to the atmosphere, as well as persistent sinks for ubiquitous microplastics due to the high population density and frequent anthropogenic activity. The potential impacts of microplastics on GHG production, however, remain underexplored. In this study, four types of common biodegradable microplastics (BMPs) versus four conventional non-biodegradable microplastics (NBMPs) were artificially exposed to urban lake sediments to investigate the responses of nitrous oxide (N<sub>2</sub>O) and methane (CH<sub>4</sub>) production, and make a comparison regarding how the biodegradability of microplastics affected GHG emissions. Importantly, results suggested that BMPs aggravated N<sub>2</sub>O and CH<sub>4</sub> production in urban lake sediments more severely than conventional NBMPs. The production rates of N<sub>2</sub>O and CH<sub>4</sub> increased by 48.78–71.88 % and 30.87–69.12 %, respectively, in BMPs groups, while those increased by only 0–25.69 % and 6.46–10.46 % with NBMPs exposure. Moreover, BMPs insignificantly affected nitrification but facilitated denitrification, while NBMPs inhibited both processes. BMPs not only created more oxygen-limited microenvironment, greatly promoting N<sub>2</sub>O production via nitrifier denitrification pathway, but also provided dissolved organic carbon favoring heterotrophic denitrification, which was primarily supported by the enriched denitrifiers and functional genes. In contrast, NBMPs slightly upregulated nitrifier denitrification pathway to generate N<sub>2</sub>O, and showed a toxic inhibition on both nitrifiers and denitrifiers. In addition, both BMPs and NBMPs promoted hydrogen-dependent methanogenic pathway but suppressed acetate-dependent pathway. The greater enhancement of CH<sub>4</sub> production with BMPs exposure was attributed to the additional organic carbon substrates derived from BMPs and the stimulated microbial methane metabolism activities.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"266 ","pages":"Article 122334"},"PeriodicalIF":11.4000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424012338","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Freshwater ecosystems, such as urban lake sediments, have been identified as important sources of greenhouse gases (GHGs) to the atmosphere, as well as persistent sinks for ubiquitous microplastics due to the high population density and frequent anthropogenic activity. The potential impacts of microplastics on GHG production, however, remain underexplored. In this study, four types of common biodegradable microplastics (BMPs) versus four conventional non-biodegradable microplastics (NBMPs) were artificially exposed to urban lake sediments to investigate the responses of nitrous oxide (N2O) and methane (CH4) production, and make a comparison regarding how the biodegradability of microplastics affected GHG emissions. Importantly, results suggested that BMPs aggravated N2O and CH4 production in urban lake sediments more severely than conventional NBMPs. The production rates of N2O and CH4 increased by 48.78–71.88 % and 30.87–69.12 %, respectively, in BMPs groups, while those increased by only 0–25.69 % and 6.46–10.46 % with NBMPs exposure. Moreover, BMPs insignificantly affected nitrification but facilitated denitrification, while NBMPs inhibited both processes. BMPs not only created more oxygen-limited microenvironment, greatly promoting N2O production via nitrifier denitrification pathway, but also provided dissolved organic carbon favoring heterotrophic denitrification, which was primarily supported by the enriched denitrifiers and functional genes. In contrast, NBMPs slightly upregulated nitrifier denitrification pathway to generate N2O, and showed a toxic inhibition on both nitrifiers and denitrifiers. In addition, both BMPs and NBMPs promoted hydrogen-dependent methanogenic pathway but suppressed acetate-dependent pathway. The greater enhancement of CH4 production with BMPs exposure was attributed to the additional organic carbon substrates derived from BMPs and the stimulated microbial methane metabolism activities.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.