Jupyter widgets and extensions for education and research in computational physics and chemistry

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dou Du , Taylor J. Baird , Kristjan Eimre , Sara Bonella , Giovanni Pizzi
{"title":"Jupyter widgets and extensions for education and research in computational physics and chemistry","authors":"Dou Du ,&nbsp;Taylor J. Baird ,&nbsp;Kristjan Eimre ,&nbsp;Sara Bonella ,&nbsp;Giovanni Pizzi","doi":"10.1016/j.cpc.2024.109353","DOIUrl":null,"url":null,"abstract":"<div><p>Interactive notebooks are a precious tool for creating graphical user interfaces and teaching materials. Python and Jupyter are becoming increasingly popular in this context, with Jupyter widgets at the core of the interactive functionalities. However, while packages and libraries which offer a broad range of general-purpose widgets exist, there is limited development of specialized widgets for computational physics, chemistry and materials science. This deficiency implies significant time investments for the development of effective Jupyter notebooks for research and education in these domains. Here, we present custom Jupyter widgets that we have developed to target the needs of these communities. These widgets constitute high-quality interactive graphical components and can be employed, for example, to visualize and manipulate data, or to explore different visual representations of concepts, clarifying the relationships existing between them. In addition, we discuss with one example how similar functionality can be exposed in the form of JupyterLab extensions, modifying the JupyterLab interface for an enhanced user experience when working with applications within the targeted scientific domains.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"305 ","pages":"Article 109353"},"PeriodicalIF":7.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524002765/pdfft?md5=eeba4d91253b8bb749a818b2ceb7abe3&pid=1-s2.0-S0010465524002765-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002765","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Interactive notebooks are a precious tool for creating graphical user interfaces and teaching materials. Python and Jupyter are becoming increasingly popular in this context, with Jupyter widgets at the core of the interactive functionalities. However, while packages and libraries which offer a broad range of general-purpose widgets exist, there is limited development of specialized widgets for computational physics, chemistry and materials science. This deficiency implies significant time investments for the development of effective Jupyter notebooks for research and education in these domains. Here, we present custom Jupyter widgets that we have developed to target the needs of these communities. These widgets constitute high-quality interactive graphical components and can be employed, for example, to visualize and manipulate data, or to explore different visual representations of concepts, clarifying the relationships existing between them. In addition, we discuss with one example how similar functionality can be exposed in the form of JupyterLab extensions, modifying the JupyterLab interface for an enhanced user experience when working with applications within the targeted scientific domains.

用于计算物理和化学教育与研究的 Jupyter 小工具和扩展工具
交互式笔记本是创建图形用户界面和教学材料的重要工具。在这方面,Python 和 Jupyter 越来越受欢迎,而 Jupyter 小工具是交互功能的核心。然而,虽然有软件包和程序库提供广泛的通用小工具,但针对计算物理、化学和材料科学的专用小工具的开发却很有限。这一不足意味着需要投入大量时间,才能为这些领域的研究和教育开发出有效的 Jupyter 笔记本。在此,我们介绍针对这些领域的需求而开发的定制 Jupyter 小工具。这些小工具构成了高质量的交互式图形组件,可用于可视化和操作数据,或探索概念的不同可视化表现形式,阐明它们之间存在的关系。此外,我们还通过一个例子讨论了如何以 JupyterLab 扩展的形式提供类似功能,从而在使用目标科学领域的应用程序时修改 JupyterLab 界面以增强用户体验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信