Stream salinity prediction in data-scarce regions: Application of transfer learning and uncertainty quantification

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Kasra Khodkar , Ali Mirchi , Vahid Nourani , Afsaneh Kaghazchi , Jeffrey M. Sadler , Abubakarr Mansaray , Kevin Wagner , Phillip D. Alderman , Saleh Taghvaeian , Ryan T. Bailey
{"title":"Stream salinity prediction in data-scarce regions: Application of transfer learning and uncertainty quantification","authors":"Kasra Khodkar ,&nbsp;Ali Mirchi ,&nbsp;Vahid Nourani ,&nbsp;Afsaneh Kaghazchi ,&nbsp;Jeffrey M. Sadler ,&nbsp;Abubakarr Mansaray ,&nbsp;Kevin Wagner ,&nbsp;Phillip D. Alderman ,&nbsp;Saleh Taghvaeian ,&nbsp;Ryan T. Bailey","doi":"10.1016/j.jconhyd.2024.104418","DOIUrl":null,"url":null,"abstract":"<div><p>Scarcity of stream salinity data poses a challenge to understanding salinity dynamics and its implications for water supply management in water-scarce salt-prone regions around the world. This paper introduces a framework for generating continuous daily stream salinity estimates using instance-based transfer learning (TL) and assessing the reliability of the synthetic salinity data through uncertainty quantification via prediction intervals (PIs). The framework was developed using two temporally distinct specific conductance (SC) datasets from the Upper Red River Basin (URRB) located in southwestern Oklahoma and Texas Panhandle, United States. The instance-based TL approach was implemented by calibrating Feedforward Neural Networks (FFNNs) on a source SC dataset of around 1200 instantaneous grab samples collected by United States Geological Survey (USGS) from 1959 to 1993. The trained FFNNs were subsequently tested on a target dataset (1998-present) of 220 instantaneous grab samples collected by the Oklahoma Water Resources Board (OWRB). The framework's generalizability was assessed in the data-rich Bird Creek watershed in Oklahoma by manipulating continuous SC data to simulate data-scarce conditions for training the models and using the complete Bird Creek dataset for model evaluation. The Lower Upper Bound Estimation (LUBE) method was used with FFNNs to estimate PIs for uncertainty quantification. Autoregressive SC prediction methods via FFNN were found to be reliable with Nash Sutcliffe Efficiency (NSE) values of 0.65 and 0.45 on in-sample and out-of-sample test data, respectively. The same modeling scenario resulted in an NSE of 0.54 for the Bird Creek data using a similar missing data ratio, whereas a higher ratio of observed data increased the accuracy (NSE = 0.84). The relatively narrow estimated PIs for the North Fork Red River in the URRB indicated satisfactory stream salinity predictions, showing an average width equivalent to 25 % of the observed range and a confidence level of 70 %.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224001220","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Scarcity of stream salinity data poses a challenge to understanding salinity dynamics and its implications for water supply management in water-scarce salt-prone regions around the world. This paper introduces a framework for generating continuous daily stream salinity estimates using instance-based transfer learning (TL) and assessing the reliability of the synthetic salinity data through uncertainty quantification via prediction intervals (PIs). The framework was developed using two temporally distinct specific conductance (SC) datasets from the Upper Red River Basin (URRB) located in southwestern Oklahoma and Texas Panhandle, United States. The instance-based TL approach was implemented by calibrating Feedforward Neural Networks (FFNNs) on a source SC dataset of around 1200 instantaneous grab samples collected by United States Geological Survey (USGS) from 1959 to 1993. The trained FFNNs were subsequently tested on a target dataset (1998-present) of 220 instantaneous grab samples collected by the Oklahoma Water Resources Board (OWRB). The framework's generalizability was assessed in the data-rich Bird Creek watershed in Oklahoma by manipulating continuous SC data to simulate data-scarce conditions for training the models and using the complete Bird Creek dataset for model evaluation. The Lower Upper Bound Estimation (LUBE) method was used with FFNNs to estimate PIs for uncertainty quantification. Autoregressive SC prediction methods via FFNN were found to be reliable with Nash Sutcliffe Efficiency (NSE) values of 0.65 and 0.45 on in-sample and out-of-sample test data, respectively. The same modeling scenario resulted in an NSE of 0.54 for the Bird Creek data using a similar missing data ratio, whereas a higher ratio of observed data increased the accuracy (NSE = 0.84). The relatively narrow estimated PIs for the North Fork Red River in the URRB indicated satisfactory stream salinity predictions, showing an average width equivalent to 25 % of the observed range and a confidence level of 70 %.

数据稀缺地区的溪流盐度预测:迁移学习和不确定性量化的应用
溪流盐度数据的稀缺对了解全球缺水易盐地区的盐度动态及其对供水管理的影响构成了挑战。本文介绍了一种利用基于实例的迁移学习(TL)生成连续的每日溪流盐度估计值的框架,并通过预测区间(PIs)进行不确定性量化来评估合成盐度数据的可靠性。该框架是利用位于美国俄克拉荷马州西南部和德克萨斯州潘汉德尔的上红河流域(URRB)两个时间上不同的比电导率(SC)数据集开发的。美国地质调查局(USGS)从 1959 年到 1993 年收集了约 1200 个瞬时抓取样本,通过校准前馈神经网络(FFNN),实现了基于实例的 TL 方法。经过训练的 FFNN 随后在俄克拉荷马州水资源委员会 (OWRB) 收集的 220 个瞬时抓取样本的目标数据集(1998 年至今)上进行了测试。在俄克拉荷马州数据丰富的鸟溪流域,通过处理连续的 SC 数据来模拟数据稀缺的条件以训练模型,并使用完整的鸟溪数据集进行模型评估,从而评估了该框架的通用性。下限上限估算(LUBE)方法与 FFNNs 一起用于估算不确定性量化的 PI。在样本内和样本外测试数据上,发现通过 FFNN 进行自回归 SC 预测的方法是可靠的,其 Nash Sutcliffe 效率 (NSE) 值分别为 0.65 和 0.45。在同样的建模方案下,鸟溪数据的缺失数据比率为 0.54,而观测数据比率越高,准确度越高(NSE = 0.84)。在 URRB 中,红河北岔的估计 PI 相对较窄,这表明溪流盐度预测结果令人满意,其平均宽度相当于观测范围的 25%,置信度为 70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信