{"title":"Dynamic properties of the dynamical system (FnK(X),FnK(f))","authors":"Franco Barragán , Anahí Rojas , Jesús F. Tenorio","doi":"10.1016/j.topol.2024.109048","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> be a dynamical system, where <em>X</em> is a nondegenerate continuum and <em>f</em> is a map. For any positive integer <em>n</em>, we consider the hyperspace <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> with the Vietoris topology. For <span><math><mi>n</mi><mo>></mo><mn>1</mn></math></span> and <span><math><mi>K</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> the subset <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is defined as the collection of elements of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> containing <em>K</em>. We consider the quotient hyperspace <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mi>⧸</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>, which is obtained from <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> by shrinking <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> to one point set. Furthermore, we consider the induced maps <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>:</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>f</mi><mo>)</mo><mo>:</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. In this paper, we introduce the dynamical system <span><math><mo>(</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>f</mi><mo>)</mo><mo>)</mo></math></span> and we study relationships between the conditions <span><math><mi>f</mi><mo>∈</mo><mi>M</mi></math></span>, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>∈</mo><mi>M</mi></math></span> and <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>f</mi><mo>)</mo><mo>∈</mo><mi>M</mi></math></span>, where <span><math><mi>M</mi></math></span> is one of the following classes of maps: transitive, mixing, weakly mixing, totally transitive, exact, exact in the sense of Akin-Auslander-Nagar, strongly transitive in the sense of Akin-Auslander-Nagar, exact transitive, fully exact, strongly exact transitive, strongly product transitive, orbit-transitive, Devaney chaotic, irreducible, <span><math><mi>T</mi><msub><mrow><mi>T</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msub></math></span>, strongly transitive and very strongly transitive.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"356 ","pages":"Article 109048"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002335","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a dynamical system, where X is a nondegenerate continuum and f is a map. For any positive integer n, we consider the hyperspace with the Vietoris topology. For and the subset of is defined as the collection of elements of containing K. We consider the quotient hyperspace , which is obtained from by shrinking to one point set. Furthermore, we consider the induced maps and . In this paper, we introduce the dynamical system and we study relationships between the conditions , and , where is one of the following classes of maps: transitive, mixing, weakly mixing, totally transitive, exact, exact in the sense of Akin-Auslander-Nagar, strongly transitive in the sense of Akin-Auslander-Nagar, exact transitive, fully exact, strongly exact transitive, strongly product transitive, orbit-transitive, Devaney chaotic, irreducible, , strongly transitive and very strongly transitive.
期刊介绍:
Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology.
At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.