Dynamic properties of the dynamical system (FnK(X),FnK(f))

IF 0.6 4区 数学 Q3 MATHEMATICS
Franco Barragán , Anahí Rojas , Jesús F. Tenorio
{"title":"Dynamic properties of the dynamical system (FnK(X),FnK(f))","authors":"Franco Barragán ,&nbsp;Anahí Rojas ,&nbsp;Jesús F. Tenorio","doi":"10.1016/j.topol.2024.109048","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>f</mi><mo>)</mo></math></span> be a dynamical system, where <em>X</em> is a nondegenerate continuum and <em>f</em> is a map. For any positive integer <em>n</em>, we consider the hyperspace <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> with the Vietoris topology. For <span><math><mi>n</mi><mo>&gt;</mo><mn>1</mn></math></span> and <span><math><mi>K</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> the subset <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is defined as the collection of elements of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> containing <em>K</em>. We consider the quotient hyperspace <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mi>⧸</mi><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span>, which is obtained from <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> by shrinking <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>K</mi><mo>,</mo><mi>X</mi><mo>)</mo></math></span> to one point set. Furthermore, we consider the induced maps <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>:</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>f</mi><mo>)</mo><mo>:</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo><mo>→</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span>. In this paper, we introduce the dynamical system <span><math><mo>(</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo><mo>,</mo><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>f</mi><mo>)</mo><mo>)</mo></math></span> and we study relationships between the conditions <span><math><mi>f</mi><mo>∈</mo><mi>M</mi></math></span>, <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>∈</mo><mi>M</mi></math></span> and <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow><mrow><mi>K</mi></mrow></msubsup><mo>(</mo><mi>f</mi><mo>)</mo><mo>∈</mo><mi>M</mi></math></span>, where <span><math><mi>M</mi></math></span> is one of the following classes of maps: transitive, mixing, weakly mixing, totally transitive, exact, exact in the sense of Akin-Auslander-Nagar, strongly transitive in the sense of Akin-Auslander-Nagar, exact transitive, fully exact, strongly exact transitive, strongly product transitive, orbit-transitive, Devaney chaotic, irreducible, <span><math><mi>T</mi><msub><mrow><mi>T</mi></mrow><mrow><mo>+</mo><mo>+</mo></mrow></msub></math></span>, strongly transitive and very strongly transitive.</p></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"356 ","pages":"Article 109048"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864124002335","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (X,f) be a dynamical system, where X is a nondegenerate continuum and f is a map. For any positive integer n, we consider the hyperspace Fn(X) with the Vietoris topology. For n>1 and KFn(X) the subset Fn(K,X) of Fn(X) is defined as the collection of elements of Fn(X) containing K. We consider the quotient hyperspace FnK(X)=Fn(X)Fn(K,X), which is obtained from Fn(X) by shrinking Fn(K,X) to one point set. Furthermore, we consider the induced maps Fn(f):Fn(X)Fn(X) and FnK(f):FnK(X)FnK(X). In this paper, we introduce the dynamical system (FnK(X),FnK(f)) and we study relationships between the conditions fM, Fn(f)M and FnK(f)M, where M is one of the following classes of maps: transitive, mixing, weakly mixing, totally transitive, exact, exact in the sense of Akin-Auslander-Nagar, strongly transitive in the sense of Akin-Auslander-Nagar, exact transitive, fully exact, strongly exact transitive, strongly product transitive, orbit-transitive, Devaney chaotic, irreducible, TT++, strongly transitive and very strongly transitive.

动力系统 (FnK(X),FnK(f))的动态特性
假设 (X,f) 是一个动力系统,其中 X 是一个非enerate 连续体,f 是一个映射。对于任意正整数 n,我们考虑具有 Vietoris 拓扑的超空间 Fn(X)。对于 n>1 和 K∈Fn(X),Fn(X) 的子集 Fn(K,X) 被定义为 Fn(X) 中包含 K 的元素集合。我们考虑商超空间 FnK(X)=Fn(X)⧸Fn(K,X) ,它是通过将 Fn(K,X) 缩小到一个点集而从 Fn(X) 得到的。此外,我们还考虑了诱导映射 Fn(f):Fn(X)→Fn(X) 和 FnK(f):FnK(X)→FnK(X) 。本文引入动力系统 (FnK(X),FnK(f)),并研究条件 f∈M、Fn(f)∈M 和 FnK(f)∈M 之间的关系,其中 M 是以下几类映射之一:传递、混合、弱混合、完全传递、精确、阿金-奥斯兰德-纳加尔意义上的精确、阿金-奥斯兰德-纳加尔意义上的强传递、精确传递、完全精确、强精确传递、强积传递、轨道传递、德瓦尼混沌、不可还原、TT++、强传递和极强传递。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信