Clifton P. Bueno de Mesquita , Lara Vimercati , Dongying Wu , Mary K. Childress , August Danz , Arthur C. Grupe , Danny Haelewaters , Natalie M. Hyde , Thiago Kossmann , Charles Oliver , Candice Perrotta , Benjamin D. Young , Steven K. Schmidt , Susannah G. Tringe , C. Alisha Quandt
{"title":"Fungal diversity and function in metagenomes sequenced from extreme environments","authors":"Clifton P. Bueno de Mesquita , Lara Vimercati , Dongying Wu , Mary K. Childress , August Danz , Arthur C. Grupe , Danny Haelewaters , Natalie M. Hyde , Thiago Kossmann , Charles Oliver , Candice Perrotta , Benjamin D. Young , Steven K. Schmidt , Susannah G. Tringe , C. Alisha Quandt","doi":"10.1016/j.funeco.2024.101383","DOIUrl":null,"url":null,"abstract":"<div><p>Fungi are increasingly recognized as key players in various extreme environments. Here we present an analysis of publicly-sourced metagenomes from global extreme environments, focusing on fungal taxonomy and function. The majority of 855 selected metagenomes contained scaffolds assigned to fungi. Relative abundance of fungi was as high as 10% of protein-coding genes with taxonomic annotation, with up to 289 fungal genera per sample. Despite taxonomic clustering by environment, fungal communities were more dissimilar than archaeal and bacterial communities, both for within- and between-environment comparisons. Relatively abundant fungal classes in extreme environments included Dothideomycetes, Eurotiomycetes, Leotiomycetes, Pezizomycetes, Saccharomycetes, and Sordariomycetes. Broad generalists and prolific aerial spore formers were the most relatively abundant fungal genera detected in most of the extreme environments, bringing up the question of whether they are actively growing in those environments or just surviving as spores. More specialized fungi were common in some environments, such as zoosporic taxa in cryosphere water and hot springs. Relative abundances of genes involved in adaptation to general, thermal, oxidative, and osmotic stress were greatest in soda lake, acid mine drainage, and cryosphere water samples.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1754504824000540/pdfft?md5=b602e42e38bc48331ff769e567a1ecc1&pid=1-s2.0-S1754504824000540-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1754504824000540","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fungi are increasingly recognized as key players in various extreme environments. Here we present an analysis of publicly-sourced metagenomes from global extreme environments, focusing on fungal taxonomy and function. The majority of 855 selected metagenomes contained scaffolds assigned to fungi. Relative abundance of fungi was as high as 10% of protein-coding genes with taxonomic annotation, with up to 289 fungal genera per sample. Despite taxonomic clustering by environment, fungal communities were more dissimilar than archaeal and bacterial communities, both for within- and between-environment comparisons. Relatively abundant fungal classes in extreme environments included Dothideomycetes, Eurotiomycetes, Leotiomycetes, Pezizomycetes, Saccharomycetes, and Sordariomycetes. Broad generalists and prolific aerial spore formers were the most relatively abundant fungal genera detected in most of the extreme environments, bringing up the question of whether they are actively growing in those environments or just surviving as spores. More specialized fungi were common in some environments, such as zoosporic taxa in cryosphere water and hot springs. Relative abundances of genes involved in adaptation to general, thermal, oxidative, and osmotic stress were greatest in soda lake, acid mine drainage, and cryosphere water samples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.