{"title":"Asymptotically good LCD 2-quasi-abelian codes over finite fields","authors":"Guanghui Zhang , Liren Lin , Xuemei Liu","doi":"10.1016/j.disc.2024.114224","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we construct a class of linear complementary dual (LCD for short) 2-quasi-abelian codes over a finite field. Based on counting the number of such codes and estimating the number of the codes in this class whose relative minimum weights are small, we prove that the class of LCD 2-quasi-abelian codes over any finite field is asymptotically good. The existence of such codes is unconditional, which is different from the case of self-dual 2-quasi-abelian codes over a special finite field.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 1","pages":"Article 114224"},"PeriodicalIF":0.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003558/pdfft?md5=d75cfe8788325d2bba4c277d4bfdd968&pid=1-s2.0-S0012365X24003558-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003558","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we construct a class of linear complementary dual (LCD for short) 2-quasi-abelian codes over a finite field. Based on counting the number of such codes and estimating the number of the codes in this class whose relative minimum weights are small, we prove that the class of LCD 2-quasi-abelian codes over any finite field is asymptotically good. The existence of such codes is unconditional, which is different from the case of self-dual 2-quasi-abelian codes over a special finite field.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.