Inertial Halpern-type methods for variational inequality with application to medical image recovery

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Aisha Aminu Adam , Abubakar Adamu , Abdulkarim Hassan Ibrahim , Dilber Uzun Ozsahin
{"title":"Inertial Halpern-type methods for variational inequality with application to medical image recovery","authors":"Aisha Aminu Adam ,&nbsp;Abubakar Adamu ,&nbsp;Abdulkarim Hassan Ibrahim ,&nbsp;Dilber Uzun Ozsahin","doi":"10.1016/j.cnsns.2024.108315","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose inertial Halpern-type algorithms involving a quasi-monotone operator for approximating solutions of variational inequality problems which are fixed points of quasi-nonexpansive mappings in reflexive Banach spaces. We use Bregman distance functions to enhance the efficiency of our algorithms and obtain strong convergence results, even in cases where the Lipschitz constant of the operator involved is unknown a priori. Furthermore, we illustrate the practical applicability of our methods through numerical experiments. Notably, our algorithms excel when compared to recent techniques in the literature. Of particular significance is their successful application in restoring computed tomography medical images that have been affected by motion blur and random noise. Our algorithms consistently outperform established state-of-the-art methods in all conducted experiments, showcasing their competitiveness and potential to advance variational inequality problem-solving, especially in the field of medical image recovery.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005008","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose inertial Halpern-type algorithms involving a quasi-monotone operator for approximating solutions of variational inequality problems which are fixed points of quasi-nonexpansive mappings in reflexive Banach spaces. We use Bregman distance functions to enhance the efficiency of our algorithms and obtain strong convergence results, even in cases where the Lipschitz constant of the operator involved is unknown a priori. Furthermore, we illustrate the practical applicability of our methods through numerical experiments. Notably, our algorithms excel when compared to recent techniques in the literature. Of particular significance is their successful application in restoring computed tomography medical images that have been affected by motion blur and random noise. Our algorithms consistently outperform established state-of-the-art methods in all conducted experiments, showcasing their competitiveness and potential to advance variational inequality problem-solving, especially in the field of medical image recovery.

变分不等式的惯性哈尔帕恩型方法在医学图像复原中的应用
在本文中,我们提出了涉及准单调算子的惯性哈尔珀恩型算法,用于逼近变分不等式问题的解,这些解是反身巴拿赫空间中准无穷映射的定点。我们使用布雷格曼距离函数来提高算法的效率,并获得了强大的收敛结果,即使在相关算子的利普齐兹常数先验未知的情况下也是如此。此外,我们还通过数值实验说明了我们方法的实际应用性。值得注意的是,与文献中的最新技术相比,我们的算法更胜一筹。尤其重要的是,它们成功地应用于恢复受运动模糊和随机噪声影响的计算机断层扫描医学图像。在所有实验中,我们的算法始终优于现有的最先进方法,展示了它们在推进变分不等式问题解决方面的竞争力和潜力,尤其是在医学图像复原领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信