Two-level Arrow–Hurwicz iteration methods for the steady bio-convection flows

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yihan Lu, Rong An, Yuan Li
{"title":"Two-level Arrow–Hurwicz iteration methods for the steady bio-convection flows","authors":"Yihan Lu,&nbsp;Rong An,&nbsp;Yuan Li","doi":"10.1016/j.cnsns.2024.108318","DOIUrl":null,"url":null,"abstract":"<div><p>To avoid solving a saddle-point system, in this paper, we study two-level Arrow–Hurwicz finite element methods for the steady bio-convection flows problem which is coupled by the steady Navier–Stokes equations and the steady advection–diffusion equation. Using the mini element to approximate the velocity, pressure, and the piecewise linear element to approximate the concentration, we use the linearized Arrow–Hurwicz iteration scheme to obtain the coarse mesh solution and use three different one-step Stokes/Oseen/Newton linearized scheme to obtain the fine mesh solution. The optimal error estimate <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>h</mi><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>χ</mi></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> of the velocity and concentration in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm and the pressure in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm are derived, where <span><math><mi>h</mi></math></span> and <span><math><mi>H</mi></math></span> are fine and coarse mesh sizes, respectively, and <span><math><msup><mrow><mi>χ</mi></mrow><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span> denotes the iteration error with <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>χ</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. Numerical results are given to support the theoretical analysis and confirm the efficiency of the proposed two-level methods.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005033","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To avoid solving a saddle-point system, in this paper, we study two-level Arrow–Hurwicz finite element methods for the steady bio-convection flows problem which is coupled by the steady Navier–Stokes equations and the steady advection–diffusion equation. Using the mini element to approximate the velocity, pressure, and the piecewise linear element to approximate the concentration, we use the linearized Arrow–Hurwicz iteration scheme to obtain the coarse mesh solution and use three different one-step Stokes/Oseen/Newton linearized scheme to obtain the fine mesh solution. The optimal error estimate O(h+H2+χm/2) of the velocity and concentration in the H1-norm and the pressure in the L2-norm are derived, where h and H are fine and coarse mesh sizes, respectively, and χm/2 denotes the iteration error with 0<χ<1. Numerical results are given to support the theoretical analysis and confirm the efficiency of the proposed two-level methods.

稳定生物对流的两级箭-赫维茨迭代法
为了避免求解鞍点系统,本文研究了稳定纳维-斯托克斯方程和稳定平流-扩散方程耦合的稳定生物平流问题的两级 Arrow-Hurwicz 有限元方法。我们使用微型元素来近似速度和压力,使用片线性元素来近似浓度,使用线性化的 Arrow-Hurwicz 迭代方案来获得粗网格解,使用三种不同的一步式 Stokes/Oseen/Newton 线性方案来获得细网格解。其中,h 和 H 分别为细目和粗目尺寸,χm/2 表示迭代误差,0<χ<1。 数值结果支持了理论分析,并证实了所提出的两级方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信