{"title":"Insights into soil and biochar variations and their contribution to soil aggregate status – A meta-analysis","authors":"Mohammad Ghorbani, Elnaz Amirahmadi","doi":"10.1016/j.still.2024.106282","DOIUrl":null,"url":null,"abstract":"<div><p>As a dynamic process in the soil, soil aggregation has a direct impact on several vital functions, including microbial activity, greenhouse gas emissions, water storage, and nutrient availability. Biochar as a recalcitrant soil amendment could potentially regulate soil functions, especially aggregation. However, there have been conflicting studies regarding the effectiveness of biochar, its variations, and how it interacts with various soil conditions to affect aggregate status. In this regard a thorough meta-analysis was conducted, considering six categories of significant variables: soil texture, soil organic carbon (SOC), application rate, pyrolysis temperature, feedstock type, and various biochar use methodologies as well as various soil aggregation indices as impacted factors. Based on the results, wood-based biochar showed the highest efficiency above straw and manure-based biochar with a positive effect size of 15.4 % and 17.7 % for mean weight diameter (MWD) and macro-aggregate. The highest geometric mean diameter (GMD) was obtained from biochars pyrolyzed at 550< °C with 19.9 % effect size. Also, low pyrolysis temperature (<450 °C) resulted in the maximum formation of micro-aggregates with a positive effect size of 14.9 %. The moderate application of biochar (10–20 t ha<sup>−1</sup>) resulted in the lowest micro-aggregates (−8.9 %) and the highest macro-aggregates (24.2 %). The single application of biochar resulted in a positive effect size in the case of macro-aggregate (17.2 %) significantly higher than the combined application of biochar with fertilizer (8.1 %). The highest MWD (12.8 %) and GMD (7.1 %) were obtained from biochar-treated soils with loamy texture. Also, the high availability of SOC (2<%) caused the highest macro-aggregate formation with a positive effect size of 28.2 %. Expanding our knowledge of biochar capability and soil functions could change soil aggregation scenarios, as the variety of biochar pyrolysis processes and its application strategies could directly modify soil's dynamic structure, through inducing functional groups, carbon linkage, and soil particle rearrangement.</p></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"244 ","pages":"Article 106282"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724002836","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
As a dynamic process in the soil, soil aggregation has a direct impact on several vital functions, including microbial activity, greenhouse gas emissions, water storage, and nutrient availability. Biochar as a recalcitrant soil amendment could potentially regulate soil functions, especially aggregation. However, there have been conflicting studies regarding the effectiveness of biochar, its variations, and how it interacts with various soil conditions to affect aggregate status. In this regard a thorough meta-analysis was conducted, considering six categories of significant variables: soil texture, soil organic carbon (SOC), application rate, pyrolysis temperature, feedstock type, and various biochar use methodologies as well as various soil aggregation indices as impacted factors. Based on the results, wood-based biochar showed the highest efficiency above straw and manure-based biochar with a positive effect size of 15.4 % and 17.7 % for mean weight diameter (MWD) and macro-aggregate. The highest geometric mean diameter (GMD) was obtained from biochars pyrolyzed at 550< °C with 19.9 % effect size. Also, low pyrolysis temperature (<450 °C) resulted in the maximum formation of micro-aggregates with a positive effect size of 14.9 %. The moderate application of biochar (10–20 t ha−1) resulted in the lowest micro-aggregates (−8.9 %) and the highest macro-aggregates (24.2 %). The single application of biochar resulted in a positive effect size in the case of macro-aggregate (17.2 %) significantly higher than the combined application of biochar with fertilizer (8.1 %). The highest MWD (12.8 %) and GMD (7.1 %) were obtained from biochar-treated soils with loamy texture. Also, the high availability of SOC (2<%) caused the highest macro-aggregate formation with a positive effect size of 28.2 %. Expanding our knowledge of biochar capability and soil functions could change soil aggregation scenarios, as the variety of biochar pyrolysis processes and its application strategies could directly modify soil's dynamic structure, through inducing functional groups, carbon linkage, and soil particle rearrangement.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.