On Erdős covering systems in global function fields

Pub Date : 2024-08-20 DOI:10.1016/j.jnt.2024.07.002
Huixi Li , Biao Wang , Chunlin Wang , Shaoyun Yi
{"title":"On Erdős covering systems in global function fields","authors":"Huixi Li ,&nbsp;Biao Wang ,&nbsp;Chunlin Wang ,&nbsp;Shaoyun Yi","doi":"10.1016/j.jnt.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>A covering system of the integers is a finite collection of arithmetic progressions whose union is the set of integers. A well-known problem on covering systems is the minimum modulus problem posed by Erdős in 1950, who asked whether the minimum modulus in such systems with distinct moduli can be arbitrarily large. This problem was resolved by Hough in 2015, who showed that the minimum modulus is at most 10<sup>16</sup>. In 2022, Balister, Bollobás, Morris, Sahasrabudhe and Tiba reduced Hough's bound to <span><math><mn>616</mn><mo>,</mo><mn>000</mn></math></span> by developing Hough's method. They call it the distortion method. In this paper, by applying this method, we mainly prove that there does not exist any covering system of multiplicity <em>s</em> in any global function field of genus <em>g</em> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> for <span><math><mi>q</mi><mo>≥</mo><mo>(</mo><mn>1.14</mn><mo>+</mo><mn>0.16</mn><mi>g</mi><mo>)</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>6.5</mn><mo>+</mo><mn>0.97</mn><mi>g</mi></mrow></msup><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. In particular, there is no covering system of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span> with distinct moduli for <span><math><mi>q</mi><mo>≥</mo><mn>759</mn></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001707/pdfft?md5=f62f3fbb627421563f5c92d4564888ee&pid=1-s2.0-S0022314X24001707-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A covering system of the integers is a finite collection of arithmetic progressions whose union is the set of integers. A well-known problem on covering systems is the minimum modulus problem posed by Erdős in 1950, who asked whether the minimum modulus in such systems with distinct moduli can be arbitrarily large. This problem was resolved by Hough in 2015, who showed that the minimum modulus is at most 1016. In 2022, Balister, Bollobás, Morris, Sahasrabudhe and Tiba reduced Hough's bound to 616,000 by developing Hough's method. They call it the distortion method. In this paper, by applying this method, we mainly prove that there does not exist any covering system of multiplicity s in any global function field of genus g over Fq for q(1.14+0.16g)e6.5+0.97gs2. In particular, there is no covering system of Fq[x] with distinct moduli for q759.

分享
查看原文
论全局函数域中的厄尔多斯覆盖系统
整数的覆盖系统是算术级数的有限集合,其联合是整数集合。关于覆盖系统的一个著名问题是厄尔多斯在 1950 年提出的最小模问题,他问在这种具有不同模的系统中,最小模是否可以任意大。2015 年,霍夫解决了这一问题,他证明了最小模量最多为 1016。2022 年,Balister、Bollobás、Morris、Sahasrabudhe 和 Tiba 通过发展 Hough 方法,将 Hough 的界限降低到 616,000。他们称之为扭曲法。在本文中,通过应用这一方法,我们主要证明了在 Fq 上任何属 g 的全局函数域中,不存在任何乘数为 s 的覆盖系统,即 q≥(1.14+0.16g)e6.5+0.97gs2。特别是,在 q≥759 时,Fq[x]不存在具有不同模数的覆盖系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信