Greedy Sidon sets for linear forms

IF 0.6 3区 数学 Q3 MATHEMATICS
Yin Choi Cheng
{"title":"Greedy Sidon sets for linear forms","authors":"Yin Choi Cheng","doi":"10.1016/j.jnt.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>The greedy Sidon set, also known as the Mian-Chowla sequence, is the lexicographically first set in <span><math><mi>N</mi></math></span> that does not contain <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> with <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. Its growth and structure have remained enigmatic for 80 years. In this work, we study a generalization from the form <span><math><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> to arbitrary linear forms <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mo>…</mo><mo>+</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>h</mi></mrow></msub><msub><mrow><mi>x</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>; these are called Sidon sets for linear forms. We explicitly describe the elements of the greedy Sidon sets for linear forms when <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> for some <span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>, and also when <span><math><mi>h</mi><mo>=</mo><mn>2</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mn>4</mn></math></span>, the “structured” domain. We also contrast the “enigmatic” domain when <span><math><mi>h</mi><mo>=</mo><mn>2</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>3</mn></math></span> with the “structured” domain, and give upper bounds on the growth rates in both cases.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"266 ","pages":"Pages 225-248"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001768/pdfft?md5=530dddb3b9f53a0f7a336819d6924b12&pid=1-s2.0-S0022314X24001768-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001768","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The greedy Sidon set, also known as the Mian-Chowla sequence, is the lexicographically first set in N that does not contain x1,x2,y1,y2 with x1+x2=y1+y2. Its growth and structure have remained enigmatic for 80 years. In this work, we study a generalization from the form x1+x2 to arbitrary linear forms c1x1++chxh; these are called Sidon sets for linear forms. We explicitly describe the elements of the greedy Sidon sets for linear forms when ci=ni1 for some n2, and also when h=2,c1=2,c24, the “structured” domain. We also contrast the “enigmatic” domain when h=2,c1=2,c2=3 with the “structured” domain, and give upper bounds on the growth rates in both cases.

线性形式的贪婪西顿集
贪婪西顿集合,又称米安-乔拉序列,是 N 中不包含 x1、x2、y1、y2 且 x1+x2=y1+y2 的词序第一集合。80 年来,它的成长和结构一直是个谜。在这项工作中,我们研究了从 x1+x2 形式到任意线性形式 c1x1+...+chxh 的广义化;这些形式被称为线性形式的西顿集。我们明确描述了线性形式的贪婪西顿集的元素,当某些 n≥2 时,ci=ni-1,以及当 h=2,c1=2,c2≥4 时,即 "结构化 "域。我们还将 h=2,c1=2,c2=3 时的 "神秘 "域与 "结构化 "域进行了对比,并给出了两种情况下的增长率上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信