Convection instability in a vertical porous Brinkman fluid layer with uniform horizontal throughflow

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Ke Shi , Beinan Jia , Jialu Wang , Yongjun Jian
{"title":"Convection instability in a vertical porous Brinkman fluid layer with uniform horizontal throughflow","authors":"Ke Shi ,&nbsp;Beinan Jia ,&nbsp;Jialu Wang ,&nbsp;Yongjun Jian","doi":"10.1016/j.cjph.2024.08.027","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper examines the effect of a uniform horizontal throughflow on the linear stability of buoyancy-driven convection in an infinite vertical fluid layer saturating a Brinkman porous medium. Two different constant temperature distributions are assigned on the rigid-permeable boundaries, so that there exists a horizontal temperature gradient. The resulting eigenvalue problem is solved numerically using the Chebyshev collocation method. The neutral stability curves are presented, and the critical values of the Rayleigh number are calculated for various prescribed values of the governing parameters. The onset of convection relies on several dimensionless parameter values of Darcy number <em>Da</em>, Péclet number <em>Pe</em> (it determines the strength of the horizontal throughflow), and Darcy-Prandtl number <em>Pr<sub>D</sub></em>. It is shown that there exists a critical value of the throughflow parameter <em>Pe</em>, which will increase with <em>Da</em>. Below the critical value of <em>Pe</em>, critical Rayleigh number <em>Ra<sub>c</sub></em> becomes smaller with the increase of <em>Pe</em>, which means the horizontal throughflow has a destabilizing effect. However, when <em>Pe</em> is larger than the critical value, an opposite conclusion can be drawn and the horizontal throughflow has a stabilizing effect. Moreover, the influence of the <em>Pr<sub>D</sub></em> on convection instability exhibits a dual behavior depending on <em>Pe</em>. The <em>Pr<sub>D</sub></em> stabilizes the system when <em>Pe</em> is small, and it destabilizes the system when <em>Pe</em> is large.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"91 ","pages":"Pages 757-772"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003290","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper examines the effect of a uniform horizontal throughflow on the linear stability of buoyancy-driven convection in an infinite vertical fluid layer saturating a Brinkman porous medium. Two different constant temperature distributions are assigned on the rigid-permeable boundaries, so that there exists a horizontal temperature gradient. The resulting eigenvalue problem is solved numerically using the Chebyshev collocation method. The neutral stability curves are presented, and the critical values of the Rayleigh number are calculated for various prescribed values of the governing parameters. The onset of convection relies on several dimensionless parameter values of Darcy number Da, Péclet number Pe (it determines the strength of the horizontal throughflow), and Darcy-Prandtl number PrD. It is shown that there exists a critical value of the throughflow parameter Pe, which will increase with Da. Below the critical value of Pe, critical Rayleigh number Rac becomes smaller with the increase of Pe, which means the horizontal throughflow has a destabilizing effect. However, when Pe is larger than the critical value, an opposite conclusion can be drawn and the horizontal throughflow has a stabilizing effect. Moreover, the influence of the PrD on convection instability exhibits a dual behavior depending on Pe. The PrD stabilizes the system when Pe is small, and it destabilizes the system when Pe is large.

Abstract Image

具有均匀水平通流的垂直多孔布林克曼流体层中的对流不稳定性
本文研究了在布林克曼多孔介质饱和的无限垂直流体层中,均匀水平贯通流对浮力驱动对流线性稳定性的影响。在刚性-渗透边界上分配了两种不同的恒温分布,因此存在水平温度梯度。由此产生的特征值问题采用切比雪夫配位法进行数值求解。文中给出了中性稳定曲线,并计算了各种规定参数值下的雷利数临界值。对流的发生取决于达西数 Da、佩克莱特数 Pe(它决定了水平贯流的强度)和达西-普朗特尔数 PrD 等几个无量纲参数值。结果表明,存在一个随 Da 值增大而增大的通流参数 Pe 临界值。在 Pe 临界值以下,临界瑞利数 Rac 会随着 Pe 的增大而变小,这意味着水平贯穿流具有失稳效应。然而,当 Pe 大于临界值时,可以得出相反的结论,水平贯流具有稳定作用。此外,PrD 对对流不稳定性的影响根据 Pe 的不同表现出双重性。当 Pe 小于临界值时,PrD 会稳定系统;当 Pe 大于临界值时,PrD 会破坏系统稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信