Some computational results on a conjecture of de Polignac about numbers of the form p + 2k

IF 0.6 3区 数学 Q3 MATHEMATICS
Yuda Chen, Xiangjun Dai, Huixi Li
{"title":"Some computational results on a conjecture of de Polignac about numbers of the form p + 2k","authors":"Yuda Chen,&nbsp;Xiangjun Dai,&nbsp;Huixi Li","doi":"10.1016/j.jnt.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>U</mi></math></span> be the set of positive odd numbers that can not be written in the form <span><math><mi>p</mi><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span>. Recently, by analyzing possible prime divisors of <em>b</em>, Chen proved <span><math><mi>b</mi><mo>≥</mo><mn>11184810</mn></math></span> and <span><math><mi>ω</mi><mo>(</mo><mi>b</mi><mo>)</mo><mo>≥</mo><mn>7</mn></math></span> if an arithmetic progression <span><math><mi>a</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>b</mi><mo>)</mo></math></span> is in <span><math><mi>U</mi></math></span>, with <span><math><mi>ω</mi><mo>(</mo><mi>b</mi><mo>)</mo><mo>=</mo><mn>7</mn></math></span> if and only if <span><math><mi>b</mi><mo>=</mo><mn>11184810</mn></math></span>, where <span><math><mi>ω</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is the number of distinct prime divisors of <em>n</em>. In this paper, we take a computational approach to prove <span><math><mi>b</mi><mo>≥</mo><mn>11184810</mn></math></span> and provide all possible values of <em>a</em> if <span><math><mi>a</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>11184810</mn><mo>)</mo></math></span> is in <span><math><mi>U</mi></math></span>. Moreover, we explicitly construct nontrivial arithmetic progressions <span><math><mi>a</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>b</mi><mo>)</mo></math></span> in <span><math><mi>U</mi></math></span> with <span><math><mi>ω</mi><mo>(</mo><mi>b</mi><mo>)</mo><mo>=</mo><mn>8</mn></math></span>, 9, 10, or 11, and provide potential nontrivial arithmetic progressions <span><math><mi>a</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>b</mi><mo>)</mo></math></span> in <span><math><mi>U</mi></math></span> such that <span><math><mi>ω</mi><mo>(</mo><mi>b</mi><mo>)</mo><mo>=</mo><mi>s</mi></math></span> for any fixed <span><math><mi>s</mi><mo>≥</mo><mn>12</mn></math></span>. Furthermore, we improve the upper bound estimate of numbers of the form <span><math><mi>p</mi><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>k</mi></mrow></msup></math></span> by Habsieger and Roblot in 2006 to 0.490341088858244 by enhancing their algorithm and employing GPU computation.</p></div>","PeriodicalId":50110,"journal":{"name":"Journal of Number Theory","volume":"266 ","pages":"Pages 249-268"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022314X24001690/pdfft?md5=34d1d69eca5fb0f5a9878d3392dfc7c6&pid=1-s2.0-S0022314X24001690-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001690","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let U be the set of positive odd numbers that can not be written in the form p+2k. Recently, by analyzing possible prime divisors of b, Chen proved b11184810 and ω(b)7 if an arithmetic progression a(modb) is in U, with ω(b)=7 if and only if b=11184810, where ω(n) is the number of distinct prime divisors of n. In this paper, we take a computational approach to prove b11184810 and provide all possible values of a if a(mod11184810) is in U. Moreover, we explicitly construct nontrivial arithmetic progressions a(modb) in U with ω(b)=8, 9, 10, or 11, and provide potential nontrivial arithmetic progressions a(modb) in U such that ω(b)=s for any fixed s12. Furthermore, we improve the upper bound estimate of numbers of the form p+2k by Habsieger and Roblot in 2006 to 0.490341088858244 by enhancing their algorithm and employing GPU computation.

德-波利尼亚克关于 p + 2k 形式数的猜想的一些计算结果
设 U 是不能写成 p+2k 形式的正奇数的集合。最近,Chen 通过分析 b 的可能素除数,证明了如果算术级数 a(modb) 在 U 中,则 b≥11184810 且 ω(b)≥7,当且仅当 b=11184810 时,ω(b)=7,其中 ω(n) 是 n 的不同素除数的个数。本文采用计算方法证明 b≥11184810,并提供了 a(mod11184810) 在 U 中时 a 的所有可能值。此外,我们明确地构造了 U 中 ω(b)=8, 9, 10 或 11 的非微不足道的算术级数 a(modb),并提供了 U 中潜在的非微不足道的算术级数 a(modb),使得任何固定的 s≥12 时,ω(b)=s。此外,我们通过增强算法和使用 GPU 计算,将哈布西格和罗布洛 2006 年对 p+2k 形式数的估计上限提高到了 0.490341088858244。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Number Theory
Journal of Number Theory 数学-数学
CiteScore
1.30
自引率
14.30%
发文量
122
审稿时长
16 weeks
期刊介绍: The Journal of Number Theory (JNT) features selected research articles that represent the broad spectrum of interest in contemporary number theory and allied areas. A valuable resource for mathematicians, the journal provides an international forum for the publication of original research in this field. The Journal of Number Theory is encouraging submissions of quality, long articles where most or all of the technical details are included. The journal now considers and welcomes also papers in Computational Number Theory. Starting in May 2019, JNT will have a new format with 3 sections: JNT Prime targets (possibly very long with complete proofs) high impact papers. Articles published in this section will be granted 1 year promotional open access. JNT General Section is for shorter papers. We particularly encourage submission from junior researchers. Every attempt will be made to expedite the review process for such submissions. Computational JNT . This section aims to provide a forum to disseminate contributions which make significant use of computer calculations to derive novel number theoretic results. There will be an online repository where supplementary codes and data can be stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信