{"title":"New type of solutions for the modified Korteweg–de Vries equation","authors":"","doi":"10.1016/j.aml.2024.109288","DOIUrl":null,"url":null,"abstract":"<div><p>In this letter we report a new type of multi-soliton solutions for the modified Korteweg–de Vries (mKdV) equation. These solutions contain <span><math><mi>τ</mi></math></span> functions of the trigonometric solitons and classical solitons simultaneously. A new bilinear form of the mKdV equation is introduced to derive these solutions. The obtained solutions display as solitons living on a periodic background, which are analyzed and illustrated.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003082","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter we report a new type of multi-soliton solutions for the modified Korteweg–de Vries (mKdV) equation. These solutions contain functions of the trigonometric solitons and classical solitons simultaneously. A new bilinear form of the mKdV equation is introduced to derive these solutions. The obtained solutions display as solitons living on a periodic background, which are analyzed and illustrated.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.