Significance testing for cross correlation: A critical examination of correlations between ENSO and GRACE-derived terrestrial water storage variabilities
Chunchun Gao , Benjamin F. Chao , Bing Tan , Xudong Wu
{"title":"Significance testing for cross correlation: A critical examination of correlations between ENSO and GRACE-derived terrestrial water storage variabilities","authors":"Chunchun Gao , Benjamin F. Chao , Bing Tan , Xudong Wu","doi":"10.1016/j.gloplacha.2024.104549","DOIUrl":null,"url":null,"abstract":"<div><p>The cross correlation has a wide range of applications in geophysical fields for measuring linear connections or relationships among physical quantities. Nonetheless, there remains a dearth of comprehensive discourse regarding its statistical significance testing, which is crucial for differentiating meaningful outcomes from those merely stemming from fortuity or pure randomness. Conventional theoretical methods for significance testing, commonly used in statistical analysis tools such as SPSS and MATLAB, are only applicable when dealing with idealized circumstances such as white noise. In discretionary application of these methods to analyze geophysical signals with, say, red noise may result in potentially unjustified conclusions. This study aims to develop a comprehensive approach based on the <span><math><mi>t</mi></math></span>-distribution within a rigorous statistical context, aiming to facilitate significance tests of cross correlation for general signals with specified time shifts or ranges. Extensive Monte Carlo experiments substantiate its robustness, thereby paving the way for accurate and expeditious identification of statistically (hence potentially physically) meaningful correlations in general. As an example, we examine critically the previously purported significant correlations between ENSO (El Niño Southern Oscillation) and global terrestrial water storage variations derived from the GRACE (Gravity Recovery and Climate Experiment) satellite mission, demonstrating that they are subject to questioning in the absence of complete significance testing.</p></div>","PeriodicalId":55089,"journal":{"name":"Global and Planetary Change","volume":"241 ","pages":"Article 104549"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global and Planetary Change","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921818124001966","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cross correlation has a wide range of applications in geophysical fields for measuring linear connections or relationships among physical quantities. Nonetheless, there remains a dearth of comprehensive discourse regarding its statistical significance testing, which is crucial for differentiating meaningful outcomes from those merely stemming from fortuity or pure randomness. Conventional theoretical methods for significance testing, commonly used in statistical analysis tools such as SPSS and MATLAB, are only applicable when dealing with idealized circumstances such as white noise. In discretionary application of these methods to analyze geophysical signals with, say, red noise may result in potentially unjustified conclusions. This study aims to develop a comprehensive approach based on the -distribution within a rigorous statistical context, aiming to facilitate significance tests of cross correlation for general signals with specified time shifts or ranges. Extensive Monte Carlo experiments substantiate its robustness, thereby paving the way for accurate and expeditious identification of statistically (hence potentially physically) meaningful correlations in general. As an example, we examine critically the previously purported significant correlations between ENSO (El Niño Southern Oscillation) and global terrestrial water storage variations derived from the GRACE (Gravity Recovery and Climate Experiment) satellite mission, demonstrating that they are subject to questioning in the absence of complete significance testing.
期刊介绍:
The objective of the journal Global and Planetary Change is to provide a multi-disciplinary overview of the processes taking place in the Earth System and involved in planetary change over time. The journal focuses on records of the past and current state of the earth system, and future scenarios , and their link to global environmental change. Regional or process-oriented studies are welcome if they discuss global implications. Topics include, but are not limited to, changes in the dynamics and composition of the atmosphere, oceans and cryosphere, as well as climate change, sea level variation, observations/modelling of Earth processes from deep to (near-)surface and their coupling, global ecology, biogeography and the resilience/thresholds in ecosystems.
Key criteria for the consideration of manuscripts are (a) the relevance for the global scientific community and/or (b) the wider implications for global scale problems, preferably combined with (c) having a significance beyond a single discipline. A clear focus on key processes associated with planetary scale change is strongly encouraged.
Manuscripts can be submitted as either research contributions or as a review article. Every effort should be made towards the presentation of research outcomes in an understandable way for a broad readership.