Hong Zhu , Deyan Kong , Jiale Qian , Xiaomeng Shi , Jing Fan
{"title":"The impact of deep learning image reconstruction of spectral CTU virtual non contrast images for patients with renal stones","authors":"Hong Zhu , Deyan Kong , Jiale Qian , Xiaomeng Shi , Jing Fan","doi":"10.1016/j.ejro.2024.100599","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>To compare image quality and detection accuracy of renal stones between deep learning image reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) reconstructed virtual non-contrast (VNC) images and true non-contrast (TNC) images in spectral CT Urography (CTU).</p></div><div><h3>Methods</h3><p>A retrospective analysis was conducted on images of 70 patients who underwent abdominal-pelvic CTU in TNC phase using non-contrast scan and contrast-enhanced corticomedullary phase (CP) and excretory phase (EP) using spectral scan. The TNC scan was reconstructed using ASIR-V70 % (TNC-AR70), contrast-enhanced scans were reconstructed using AR70, DLIR medium-level (DM), and high-level (DH) to obtain CP-VNC-AR70/DM/DH and EP-VNC-AR70/DM/DH image groups, respectively. CT value, image quality and kidney stones quantification accuracy were measured and compared among groups. The subjective evaluation was independently assessed by two senior radiologists using the 5-point Likert scale for image quality and lesion visibility.</p></div><div><h3>Results</h3><p>DH images were superior to AR70 and DM images in objective image quality evaluation. There was no statistical difference in the liver and spleen (both P > 0.05), or within 6HU in renal and fat in CT value between VNC and TNC images. EP-VNC-DH had the lowest image noise, highest SNR, and CNR, and VNC-AR70 images had better noise and SNR performance than TNC-AR70 images (all p < 0.05). EP-VNC-DH had the highest subjective image quality, and CP-VNC-DH performed the best in lesion visibility. In stone CT value and volume measurements, there was no statistical difference between VNC and TNC (P > 0.05).</p></div><div><h3>Conclusion</h3><p>The DLIR-reconstructed VNC images in CTU provide better image quality than the ASIR-V reconstructed TNC images and similar quantification accuracy for kidney stones for potential dose savings.</p><p>The study highlights that deep learning image reconstruction (DLIR)-reconstructed virtual non-contrast (VNC) images in spectral CT Urography (CTU) offer improved image quality compared to traditional true non-contrast (TNC) images, while maintaining similar accuracy in kidney stone detection, suggesting potential dose savings in clinical practice.</p></div>","PeriodicalId":38076,"journal":{"name":"European Journal of Radiology Open","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352047724000546/pdfft?md5=26733059cc2a262840a0fc61adcdcfbb&pid=1-s2.0-S2352047724000546-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352047724000546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To compare image quality and detection accuracy of renal stones between deep learning image reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) reconstructed virtual non-contrast (VNC) images and true non-contrast (TNC) images in spectral CT Urography (CTU).
Methods
A retrospective analysis was conducted on images of 70 patients who underwent abdominal-pelvic CTU in TNC phase using non-contrast scan and contrast-enhanced corticomedullary phase (CP) and excretory phase (EP) using spectral scan. The TNC scan was reconstructed using ASIR-V70 % (TNC-AR70), contrast-enhanced scans were reconstructed using AR70, DLIR medium-level (DM), and high-level (DH) to obtain CP-VNC-AR70/DM/DH and EP-VNC-AR70/DM/DH image groups, respectively. CT value, image quality and kidney stones quantification accuracy were measured and compared among groups. The subjective evaluation was independently assessed by two senior radiologists using the 5-point Likert scale for image quality and lesion visibility.
Results
DH images were superior to AR70 and DM images in objective image quality evaluation. There was no statistical difference in the liver and spleen (both P > 0.05), or within 6HU in renal and fat in CT value between VNC and TNC images. EP-VNC-DH had the lowest image noise, highest SNR, and CNR, and VNC-AR70 images had better noise and SNR performance than TNC-AR70 images (all p < 0.05). EP-VNC-DH had the highest subjective image quality, and CP-VNC-DH performed the best in lesion visibility. In stone CT value and volume measurements, there was no statistical difference between VNC and TNC (P > 0.05).
Conclusion
The DLIR-reconstructed VNC images in CTU provide better image quality than the ASIR-V reconstructed TNC images and similar quantification accuracy for kidney stones for potential dose savings.
The study highlights that deep learning image reconstruction (DLIR)-reconstructed virtual non-contrast (VNC) images in spectral CT Urography (CTU) offer improved image quality compared to traditional true non-contrast (TNC) images, while maintaining similar accuracy in kidney stone detection, suggesting potential dose savings in clinical practice.