Weiwei Zhang , Jiaxin Yang , Guoqing Li , Weizheng Zhang , Gary G. Yen
{"title":"Manifold-assisted coevolutionary algorithm for constrained multi-objective optimization","authors":"Weiwei Zhang , Jiaxin Yang , Guoqing Li , Weizheng Zhang , Gary G. Yen","doi":"10.1016/j.swevo.2024.101717","DOIUrl":null,"url":null,"abstract":"<div><p>In constrained multi-objective optimization problems (CMOPs), constraints often fragment the Pareto solution space into multiple feasible and infeasible regions. This fragmentation presents a challenge for evolutionary optimization methods as feasible regions can be discrete and isolated by infeasible areas, making exploration difficult and leading to populations getting trapped in local optima. To address these issues, this paper introduces a manifold assisted coevolutionary algorithm for solving CMOPs. Firstly, a guided feasible search strategy is proposed to explore feasible regions, especially those isolated by infeasible barriers. This is achieved by estimating directions to the Constrained Pareto Set (CPS). Secondly, a manifold learning-based exploration strategy is employed to spread the population along the Pareto Set (PS) manifold by estimating the manifold distribution. Moreover, two populations are exploited, where the first population serves as the primary population, considering both constraints and objectives to explore the feasible region and search along the CPS. The second population, on the other hand, does not consider constraints and serves as an auxiliary population to explore the Unconstrained PS. By cooperating, these two populations effectively approach and cover separated CPS segments. The proposed algorithm is evaluated against seven state-of-the-art algorithms on 37 CMOP test functions and 5 CMOPs with fraudulent constraints. The experimental results clearly demonstrate that our algorithm can reliably locate multiple CPSs and is considered state-of-the-art in handling CMOPs.</p></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101717"},"PeriodicalIF":8.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002554","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In constrained multi-objective optimization problems (CMOPs), constraints often fragment the Pareto solution space into multiple feasible and infeasible regions. This fragmentation presents a challenge for evolutionary optimization methods as feasible regions can be discrete and isolated by infeasible areas, making exploration difficult and leading to populations getting trapped in local optima. To address these issues, this paper introduces a manifold assisted coevolutionary algorithm for solving CMOPs. Firstly, a guided feasible search strategy is proposed to explore feasible regions, especially those isolated by infeasible barriers. This is achieved by estimating directions to the Constrained Pareto Set (CPS). Secondly, a manifold learning-based exploration strategy is employed to spread the population along the Pareto Set (PS) manifold by estimating the manifold distribution. Moreover, two populations are exploited, where the first population serves as the primary population, considering both constraints and objectives to explore the feasible region and search along the CPS. The second population, on the other hand, does not consider constraints and serves as an auxiliary population to explore the Unconstrained PS. By cooperating, these two populations effectively approach and cover separated CPS segments. The proposed algorithm is evaluated against seven state-of-the-art algorithms on 37 CMOP test functions and 5 CMOPs with fraudulent constraints. The experimental results clearly demonstrate that our algorithm can reliably locate multiple CPSs and is considered state-of-the-art in handling CMOPs.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.