Dan Li , Yi Qu , Bin Wang , Haoyang Zhang , Lizheng Qin
{"title":"Spatio-temporal expression of Sox2+ progenitor cells regulates the regeneration of rat submandibular gland","authors":"Dan Li , Yi Qu , Bin Wang , Haoyang Zhang , Lizheng Qin","doi":"10.1016/j.archoralbio.2024.106080","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Sox2 plays crucial roles in tissues homeostasis and regeneration. However, there are lack of a comprehensive examination of Sox2 expression and its functional role in submandibular gland regeneration. Therefore, we aimed to elucidate the impact of Sox2 on submandibular gland regeneration.</p></div><div><h3>Materials and Methods</h3><p>A Sprague-Dawley rat submandibular gland duct ligation/de-ligation regeneration model was conducted in this study. Sox2-shRNA vectors were retro-ductally administered into the submandibular gland to establish a stable Sox2 knockdown model. Conventional histopathological and molecular biological methods were used to investigate phenotypic changes.</p></div><div><h3>Results</h3><p>The submandibular gland normalized completely 28 days after ligature removal (following 7 days of duct ligation). AQP5 expression gradually increased after ligation removal until returning to normal levels. In submandibular gland regeneration, Sox2 re-expressed and co-expressed with AQP5<sup>+</sup> acinar cells, and Sox2 expression peaked on day 14, recovered to normal on day 28, reproducing the developmental pattern. Sox2 knockdown hindered gland regeneration and induced irreversible fibrosis. The AQP5 expression was significantly lower than the contemporaneous solely ligated group, while the blue collagen deposition and the Vimentin expression increased prominently. The expression of CD68, IL-1β, TNF-α and IL-17A increased significantly, and epithelial cells in the Sox2 knockdown group expressed higher levels of IL-17A.</p></div><div><h3>Conclusions</h3><p>These findings highlight Sox2 as a crucial regulator of the acinar cell lineage. Sox2<sup>+</sup> progenitor cells are pivotal for acinar cell maintenance, which is indispensable for submandibular gland regeneration. Collectively, our findings may help develop targeted interventions for enhancing tissue repair and preventing irreversible fibrosis in salivary gland disorders.</p></div>","PeriodicalId":8288,"journal":{"name":"Archives of oral biology","volume":"168 ","pages":"Article 106080"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of oral biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003996924002012","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Sox2 plays crucial roles in tissues homeostasis and regeneration. However, there are lack of a comprehensive examination of Sox2 expression and its functional role in submandibular gland regeneration. Therefore, we aimed to elucidate the impact of Sox2 on submandibular gland regeneration.
Materials and Methods
A Sprague-Dawley rat submandibular gland duct ligation/de-ligation regeneration model was conducted in this study. Sox2-shRNA vectors were retro-ductally administered into the submandibular gland to establish a stable Sox2 knockdown model. Conventional histopathological and molecular biological methods were used to investigate phenotypic changes.
Results
The submandibular gland normalized completely 28 days after ligature removal (following 7 days of duct ligation). AQP5 expression gradually increased after ligation removal until returning to normal levels. In submandibular gland regeneration, Sox2 re-expressed and co-expressed with AQP5+ acinar cells, and Sox2 expression peaked on day 14, recovered to normal on day 28, reproducing the developmental pattern. Sox2 knockdown hindered gland regeneration and induced irreversible fibrosis. The AQP5 expression was significantly lower than the contemporaneous solely ligated group, while the blue collagen deposition and the Vimentin expression increased prominently. The expression of CD68, IL-1β, TNF-α and IL-17A increased significantly, and epithelial cells in the Sox2 knockdown group expressed higher levels of IL-17A.
Conclusions
These findings highlight Sox2 as a crucial regulator of the acinar cell lineage. Sox2+ progenitor cells are pivotal for acinar cell maintenance, which is indispensable for submandibular gland regeneration. Collectively, our findings may help develop targeted interventions for enhancing tissue repair and preventing irreversible fibrosis in salivary gland disorders.
期刊介绍:
Archives of Oral Biology is an international journal which aims to publish papers of the highest scientific quality in the oral and craniofacial sciences. The journal is particularly interested in research which advances knowledge in the mechanisms of craniofacial development and disease, including:
Cell and molecular biology
Molecular genetics
Immunology
Pathogenesis
Cellular microbiology
Embryology
Syndromology
Forensic dentistry