Mobility-aware parallel offloading and resource allocation scheme for vehicular edge computing

IF 4.4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rui Men , Xiumei Fan , Kok-Lim Alvin Yau , Axida Shan , Yan Xiao
{"title":"Mobility-aware parallel offloading and resource allocation scheme for vehicular edge computing","authors":"Rui Men ,&nbsp;Xiumei Fan ,&nbsp;Kok-Lim Alvin Yau ,&nbsp;Axida Shan ,&nbsp;Yan Xiao","doi":"10.1016/j.adhoc.2024.103639","DOIUrl":null,"url":null,"abstract":"<div><p>Vehicle edge computing (VEC) enhances the distributed task processing capability within intelligent vehicle-infrastructure cooperative systems (i-VICS) by deploying servers at the network edge. However, the proliferation of onboard sensors and the continual emergence of new applications have exacerbated the inadequacy of wireless spectrum resources and edge server resources, while the high mobility of vehicles reduces reliability in task processing, resulting in increased communication and task processing delays. To address these challenges, we propose a mobile-aware Many-to-Many Parallel (MTMP) offloading scheme that integrates: a) millimeter-wave (mmWave) and cellular vehicle-to-everything (C-V2X) to mitigate excessive communication delays; and b) leveraging the underutilized resources of surrounding vehicles and parallel offloading to mitigate excessive task processing delays. To minimize the average completion delay of all tasks, this paper formulates the objective as a min-max optimization problem and solves it using the maximum entropy method (MEM), the Lagrange multiplier method, and an iterative algorithm. Extensive experimental results demonstrate the superior performance of the proposed scheme in comparison with other baseline algorithms. Specifically, our proposal achieves a 47 % reduction in task completion delay under optimal conditions, a 31.3 % increase in task completion rate, and a 30 % decrease in program runtime compared to the worst-performing algorithm.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"164 ","pages":"Article 103639"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002506","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle edge computing (VEC) enhances the distributed task processing capability within intelligent vehicle-infrastructure cooperative systems (i-VICS) by deploying servers at the network edge. However, the proliferation of onboard sensors and the continual emergence of new applications have exacerbated the inadequacy of wireless spectrum resources and edge server resources, while the high mobility of vehicles reduces reliability in task processing, resulting in increased communication and task processing delays. To address these challenges, we propose a mobile-aware Many-to-Many Parallel (MTMP) offloading scheme that integrates: a) millimeter-wave (mmWave) and cellular vehicle-to-everything (C-V2X) to mitigate excessive communication delays; and b) leveraging the underutilized resources of surrounding vehicles and parallel offloading to mitigate excessive task processing delays. To minimize the average completion delay of all tasks, this paper formulates the objective as a min-max optimization problem and solves it using the maximum entropy method (MEM), the Lagrange multiplier method, and an iterative algorithm. Extensive experimental results demonstrate the superior performance of the proposed scheme in comparison with other baseline algorithms. Specifically, our proposal achieves a 47 % reduction in task completion delay under optimal conditions, a 31.3 % increase in task completion rate, and a 30 % decrease in program runtime compared to the worst-performing algorithm.

面向车载边缘计算的移动感知并行卸载和资源分配方案
车辆边缘计算(VEC)通过在网络边缘部署服务器,增强了智能车辆-基础设施协同系统(i-VICS)的分布式任务处理能力。然而,车载传感器的激增和新应用的不断涌现加剧了无线频谱资源和边缘服务器资源的不足,同时车辆的高流动性降低了任务处理的可靠性,导致通信和任务处理延迟增加。为应对这些挑战,我们提出了一种移动感知的多对多并行(MTMP)卸载方案,该方案整合了:a) 毫米波(mmWave)和蜂窝车对万物(C-V2X),以缓解过长的通信延迟;b) 利用周围车辆未充分利用的资源和并行卸载,以缓解过长的任务处理延迟。为了最小化所有任务的平均完成延迟,本文将目标表述为最小最大优化问题,并使用最大熵法 (MEM)、拉格朗日乘法器法和迭代算法进行求解。广泛的实验结果表明,与其他基准算法相比,我们提出的方案性能优越。具体来说,与性能最差的算法相比,我们的建议在最佳条件下将任务完成延迟减少了 47%,任务完成率提高了 31.3%,程序运行时间减少了 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ad Hoc Networks
Ad Hoc Networks 工程技术-电信学
CiteScore
10.20
自引率
4.20%
发文量
131
审稿时长
4.8 months
期刊介绍: The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to: Mobile and Wireless Ad Hoc Networks Sensor Networks Wireless Local and Personal Area Networks Home Networks Ad Hoc Networks of Autonomous Intelligent Systems Novel Architectures for Ad Hoc and Sensor Networks Self-organizing Network Architectures and Protocols Transport Layer Protocols Routing protocols (unicast, multicast, geocast, etc.) Media Access Control Techniques Error Control Schemes Power-Aware, Low-Power and Energy-Efficient Designs Synchronization and Scheduling Issues Mobility Management Mobility-Tolerant Communication Protocols Location Tracking and Location-based Services Resource and Information Management Security and Fault-Tolerance Issues Hardware and Software Platforms, Systems, and Testbeds Experimental and Prototype Results Quality-of-Service Issues Cross-Layer Interactions Scalability Issues Performance Analysis and Simulation of Protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信