{"title":"External electric field induced emission behavior for ESIPT-based 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol towards near-infrared region","authors":"","doi":"10.1016/j.saa.2024.125045","DOIUrl":null,"url":null,"abstract":"<div><p>Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780–1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10<sup>-4</sup> a.u. in the keto form. Additionally, the fluorescence intensity of PyHBT is strongly influenced by the positive EEF, especially in the enol form, and the investigation of the mechanism by hole-electron analysis demonstrates that under the positive EEF, the twisted intramolecular charge transfer (TICT) process is induced, which triggers the weakening of the fluorescence intensity. In summary, our work not only complements the theoretical approach to modulate the ESIPT process, but also reveals that the photophysical properties of materials affected by the external electric field are even expected to reach the NIR region.</p></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524012113","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic light-emitting diodes (OLEDs) for low energy transfer and double emission, but the current methods for regulating ESIPT processes are mostly solvent and substituent effects. Here, utilizing the density theory functional (DFT) and time-dependent density functional theory (TD-DFT) methods, the ESIPT process controlled by an external electric field (EEF) is proposed, and the changes in photophysical properties of 2-(benzo[d]thiazol-2-yl)-4-(pyren-1-yl)phenol (PyHBT) are investigated. Structural parameter variations and IR vibrational spectra measure the prerequisite for the ESIPT process, namely, intramolecular hydrogen bond (IHB) strength, and the scanned potential energy curves (PECs) demonstrate that the ESIPT process of PyHBT is harder to execute as the positive EEF increases, and the opposite is true for the negative EEF. The absorption and fluorescence spectra show shifts under the distinct EEFs, and even the emission wavelength reaches the short-wave near-infrared (SW-NIR) region (780–1100 nm), such as 815.2 nm for a positive EEF of + 30 × 10-4 a.u. in the keto form. Additionally, the fluorescence intensity of PyHBT is strongly influenced by the positive EEF, especially in the enol form, and the investigation of the mechanism by hole-electron analysis demonstrates that under the positive EEF, the twisted intramolecular charge transfer (TICT) process is induced, which triggers the weakening of the fluorescence intensity. In summary, our work not only complements the theoretical approach to modulate the ESIPT process, but also reveals that the photophysical properties of materials affected by the external electric field are even expected to reach the NIR region.
期刊介绍:
Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science.
The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments.
Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate.
Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to:
Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences,
Novel experimental techniques or instrumentation for molecular spectroscopy,
Novel theoretical and computational methods,
Novel applications in photochemistry and photobiology,
Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.