Application of a metric for complex polynomials to bounded modification of planar Pythagorean-hodograph curves

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rida T. Farouki , Marjeta Knez , Vito Vitrih , Emil Žagar
{"title":"Application of a metric for complex polynomials to bounded modification of planar Pythagorean-hodograph curves","authors":"Rida T. Farouki ,&nbsp;Marjeta Knez ,&nbsp;Vito Vitrih ,&nbsp;Emil Žagar","doi":"10.1016/j.cam.2024.116235","DOIUrl":null,"url":null,"abstract":"<div><p>By interpreting planar polynomial curves as complex-valued functions of a real parameter, an inner product, norm, metric function, and the notion of orthogonality may be defined for such curves. This approach is applied to the complex pre-image polynomials that generate planar Pythagorean-hodograph (PH) curves, to facilitate the implementation of bounded modifications of them that preserve their PH nature. The problems of bounded modifications under the constraint of fixed curve end points and end tangent directions, and of increasing the arc length of a PH curve by a prescribed amount, are also addressed.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377042724004849/pdfft?md5=4780295e4b29384f6cb6a55047811aa7&pid=1-s2.0-S0377042724004849-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724004849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

By interpreting planar polynomial curves as complex-valued functions of a real parameter, an inner product, norm, metric function, and the notion of orthogonality may be defined for such curves. This approach is applied to the complex pre-image polynomials that generate planar Pythagorean-hodograph (PH) curves, to facilitate the implementation of bounded modifications of them that preserve their PH nature. The problems of bounded modifications under the constraint of fixed curve end points and end tangent directions, and of increasing the arc length of a PH curve by a prescribed amount, are also addressed.

将复多项式度量应用于平面毕达哥拉斯曲线的有界修正
通过将平面多项式曲线解释为实数参数的复值函数,可以为这类曲线定义内积、规范、度量函数和正交概念。这种方法适用于生成平面毕达哥拉斯曲线(PH)的复前像多项式,以方便对其进行有界修正,从而保持其 PH 性质。此外,还解决了在固定曲线端点和端切线方向的约束下进行有界修改的问题,以及将 PH 曲线的弧长增加一定量的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信