An automatic method for accurate signal-to-noise ratio estimation and baseline correction of Raman spectra of environmental microplastics

IF 4.3 2区 化学 Q1 SPECTROSCOPY
{"title":"An automatic method for accurate signal-to-noise ratio estimation and baseline correction of Raman spectra of environmental microplastics","authors":"","doi":"10.1016/j.saa.2024.125061","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we introduced a <em>k</em>-iterative double sliding-window (DSW^k) method for the estimation of spectral noise, signal-to-noise ratio (SNR), and baseline correction. The performance was evaluated using simulated spectra and compared against other commonly employed methods. Convergent evaluation determined that a <em>k</em> value of 20 strikes an optimal balance between convergence and computational intensity. The DSW^k method demonstrated outstanding performance across different spectral types (flat baseline, baseline with elevation, baseline with fluctuation, baseline with elevation and fluctuation) coupled with SNR values from 10 to 1000, achieving results that ranged from 1.01 to 1.08 times of the reference value in estimating spectral noise. It also showed that the estimated SNR values are 0.89 to 0.93 times of the reference value, demonstrating a 74.5 % − 131.7 % improvement over the conventional method in spectra with elevated and/or fluctuating baselines. Additionally, the DSW^k method proved effective in correcting baselines and identifying polymers in environmental samples of polyethylene (PE), polypropylene (PP), and polystyrene (PS), despite the limitation of reducing the peak height in spectra with low SNR. This method offers the potential to enhance the automatic and accurate evaluation of spectral quality and could assist in the development of guidelines for more rapid parameter adjustments in Raman measurements.</p></div>","PeriodicalId":433,"journal":{"name":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386142524012277","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduced a k-iterative double sliding-window (DSW^k) method for the estimation of spectral noise, signal-to-noise ratio (SNR), and baseline correction. The performance was evaluated using simulated spectra and compared against other commonly employed methods. Convergent evaluation determined that a k value of 20 strikes an optimal balance between convergence and computational intensity. The DSW^k method demonstrated outstanding performance across different spectral types (flat baseline, baseline with elevation, baseline with fluctuation, baseline with elevation and fluctuation) coupled with SNR values from 10 to 1000, achieving results that ranged from 1.01 to 1.08 times of the reference value in estimating spectral noise. It also showed that the estimated SNR values are 0.89 to 0.93 times of the reference value, demonstrating a 74.5 % − 131.7 % improvement over the conventional method in spectra with elevated and/or fluctuating baselines. Additionally, the DSW^k method proved effective in correcting baselines and identifying polymers in environmental samples of polyethylene (PE), polypropylene (PP), and polystyrene (PS), despite the limitation of reducing the peak height in spectra with low SNR. This method offers the potential to enhance the automatic and accurate evaluation of spectral quality and could assist in the development of guidelines for more rapid parameter adjustments in Raman measurements.

Abstract Image

准确估算环境微塑料拉曼光谱信噪比和基线校正的自动方法
在这项研究中,我们引入了一种 k 迭代双滑动窗口(DSW^k)方法,用于估计频谱噪声、信噪比(SNR)和基线校正。利用模拟光谱对该方法的性能进行了评估,并与其他常用方法进行了比较。收敛性评估结果表明,k 值为 20 在收敛性和计算强度之间达到了最佳平衡。DSW^k 方法在不同的光谱类型(平坦基线、基线与升高、基线与波动、基线与升高和波动)以及信噪比值从 10 到 1000 之间都表现出卓越的性能,在估计光谱噪声方面取得的结果是参考值的 1.01 到 1.08 倍。它还显示,估计信噪比值是参考值的 0.89 至 0.93 倍,在基线升高和/或波动的光谱中,比传统方法提高了 74.5% - 131.7%。此外,尽管在信噪比较低的光谱中会降低峰高,但 DSW^k 方法在校正基线和识别聚乙烯 (PE)、聚丙烯 (PP) 和聚苯乙烯 (PS) 环境样本中的聚合物方面证明是有效的。该方法有望提高光谱质量的自动和准确评估,并有助于为拉曼测量中更快速的参数调整制定指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
11.40%
发文量
1364
审稿时长
40 days
期刊介绍: Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy (SAA) is an interdisciplinary journal which spans from basic to applied aspects of optical spectroscopy in chemistry, medicine, biology, and materials science. The journal publishes original scientific papers that feature high-quality spectroscopic data and analysis. From the broad range of optical spectroscopies, the emphasis is on electronic, vibrational or rotational spectra of molecules, rather than on spectroscopy based on magnetic moments. Criteria for publication in SAA are novelty, uniqueness, and outstanding quality. Routine applications of spectroscopic techniques and computational methods are not appropriate. Topics of particular interest of Spectrochimica Acta Part A include, but are not limited to: Spectroscopy and dynamics of bioanalytical, biomedical, environmental, and atmospheric sciences, Novel experimental techniques or instrumentation for molecular spectroscopy, Novel theoretical and computational methods, Novel applications in photochemistry and photobiology, Novel interpretational approaches as well as advances in data analysis based on electronic or vibrational spectroscopy.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信