Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review

IF 15.9 1区 化学 Q1 CHEMISTRY, PHYSICAL
Mahdiyar Shahbazi , Henry Jäger , Rammile Ettelaie , Jianshe Chen , Peyman Asghartabar Kashi , Adeleh Mohammadi
{"title":"Dispersion strategies of nanomaterials in polymeric inks for efficient 3D printing of soft and smart 3D structures: A systematic review","authors":"Mahdiyar Shahbazi ,&nbsp;Henry Jäger ,&nbsp;Rammile Ettelaie ,&nbsp;Jianshe Chen ,&nbsp;Peyman Asghartabar Kashi ,&nbsp;Adeleh Mohammadi","doi":"10.1016/j.cis.2024.103285","DOIUrl":null,"url":null,"abstract":"<div><p>Nanoscience—often summarized as “the future is tiny”—highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"333 ","pages":"Article 103285"},"PeriodicalIF":15.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001868624002082/pdfft?md5=be26c535bc57f4937bc3601120da5f19&pid=1-s2.0-S0001868624002082-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624002082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscience—often summarized as “the future is tiny”—highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality. To optimize the use of nanomaterials in 3D printing, effective disaggregation techniques and strong interfacial adhesion between nanofillers and polymer matrices are essential. This review provides an overview of the application of various types of nanomaterials used in 3D printing, focusing on their functionalization principles, dispersion strategies, and colloidal stability, as well as the methodologies for aligning nanofillers within the 3D printing framework. It discusses dispersive methods, synergistic dispersion, and in-situ growth, which have yielded smart 3D-printed structures with unique functionality for specific applications. This review also focuses on nanomaterial alignment in 3D printing, detailing methods that enhance selective deposition and orientation of nanofillers within established and customized printing techniques. By emphasizing alignment strategies, we explore their impact on the performance of 3D-printed composites and highlight potential applications that benefit from ordered nanoparticles. Through these continuing efforts, this review shows that the design and development of the new class of nanomaterials are crucial to developing the next generation of smart 3D printed architectures with versatile abilities for advanced structures with exceptional performance.

Abstract Image

纳米材料在聚合物油墨中的分散策略,用于软三维和智能三维结构的高效三维打印:系统综述
纳米科学通常被概括为 "未来是微小的",它突出了研究人员通过渐进式创新推动纳米技术发展的工作。新型纳米材料的设计和创新对于开发具有低成本、高速度和多功能特点的下一代三维(3D)打印结构至关重要,可为先进应用提供卓越性能。将纳米填料整合到用于三维打印的聚合物基油墨中,预示着增材制造的新时代即将到来,从而可以创建具有更多功能的定制设计三维物体。要优化纳米材料在三维打印中的应用,有效的分解技术以及纳米填料与聚合物基质之间强大的界面粘附力至关重要。本综述概述了用于三维打印的各类纳米材料的应用,重点关注其功能化原理、分散策略和胶体稳定性,以及在三维打印框架内调整纳米填料的方法。它讨论了分散方法、协同分散和原位生长,这些方法已经为特定应用生成了具有独特功能的智能 3D 打印结构。本综述还关注三维打印中的纳米材料配准,详细介绍了在现有和定制打印技术中增强纳米填料选择性沉积和定向的方法。通过强调排列策略,我们探讨了它们对三维打印复合材料性能的影响,并重点介绍了受益于有序纳米粒子的潜在应用。通过这些持续的努力,本综述表明,新型纳米材料的设计和开发对于开发具有多功能能力的下一代智能 3D 打印架构至关重要,这些架构可用于制造具有优异性能的先进结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
28.50
自引率
2.60%
发文量
175
审稿时长
31 days
期刊介绍: "Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology. The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas. Typically, the articles published in this journal are written by recognized experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信