{"title":"CRISPR: The frontier technology of next-generation RNA detection","authors":"Liang Zhou , Wen Xu , Jinming Kong , Xueji Zhang","doi":"10.1016/j.bej.2024.109480","DOIUrl":null,"url":null,"abstract":"<div><p>Rapid and accurate molecular diagnostics are crucial for disease diagnosis and precision medicine. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins have emerged as highly effective tools for molecular diagnostics. Numerous nucleic acid detection instruments and biosensors utilizing the CRISPR/Cas system have been developed. The profiling activity of CRISPR/Cas effectors has facilitated the creation of instrument-free, sensitive, precise, and rapid nucleic acid diagnostics. This review summarizes recent advancements in CRISPR technology for RNA detection, focusing on the application of Cas12 and Cas13 systems in two scenarios: in combination with isothermal amplification technology and without amplification. It also explores the significant potential of CRISPR as a next-generation technology for RNA detection and anticipates future developments. The ongoing advancements in CRISPR are expected to enhance precision and convenience in RNA testing, impacting both biomedical research and public health practices.</p></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"211 ","pages":"Article 109480"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002675","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid and accurate molecular diagnostics are crucial for disease diagnosis and precision medicine. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) proteins have emerged as highly effective tools for molecular diagnostics. Numerous nucleic acid detection instruments and biosensors utilizing the CRISPR/Cas system have been developed. The profiling activity of CRISPR/Cas effectors has facilitated the creation of instrument-free, sensitive, precise, and rapid nucleic acid diagnostics. This review summarizes recent advancements in CRISPR technology for RNA detection, focusing on the application of Cas12 and Cas13 systems in two scenarios: in combination with isothermal amplification technology and without amplification. It also explores the significant potential of CRISPR as a next-generation technology for RNA detection and anticipates future developments. The ongoing advancements in CRISPR are expected to enhance precision and convenience in RNA testing, impacting both biomedical research and public health practices.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.