Converting ocean nacre into bone mineral matrix composite for bone regeneration- in vitro and in vivo studies

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Converting ocean nacre into bone mineral matrix composite for bone regeneration- in vitro and in vivo studies","authors":"","doi":"10.1016/j.matdes.2024.113271","DOIUrl":null,"url":null,"abstract":"<div><p>Nacre of <em>Pinctada maxima</em> is a natural biomineralized matrix, appeared 7 million years before hominins. In this study, we converted nacre into a self-setting particle bound with multiple calcium orthophosphates that reassemble mammals’ bone mineral matrices for induction of bone regeneration. The nacre-based calcium orthophosphates composite (NCOC) exhibited a compression strength of 10 MPa, which is superior to human trabecular bone. <em>In vitro</em> bioactivity tests revealed the formation of apatite with nano-porous flake-like crystals on the composite surface that mimic HA structure of a human bone matrix. NCOC demonstrated efficient attachment and proliferation of osteoblast cells, promoting osteogenic differentiation by increasing expressions of RUNX2 and OPN<em>. In vivo</em> studies using rabbit back fascia demonstrated that NCOC displays better bone healing and biocompatibility than conventional bone substitute apatite in critical bone defect models. The degradation of calcium carbonate crystal <em>in vivo</em> does not compromise structural integrity of NCOC. Overall, our data showed that NCOC produced through self-setting reactions, presents advantages such as accelerated biodegradation and osteostimulative properties, making it a promising bone substitute for effective bone regeneration.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524006464/pdfft?md5=c9e497dc3b20a6ac0694954e7a87e993&pid=1-s2.0-S0264127524006464-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524006464","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nacre of Pinctada maxima is a natural biomineralized matrix, appeared 7 million years before hominins. In this study, we converted nacre into a self-setting particle bound with multiple calcium orthophosphates that reassemble mammals’ bone mineral matrices for induction of bone regeneration. The nacre-based calcium orthophosphates composite (NCOC) exhibited a compression strength of 10 MPa, which is superior to human trabecular bone. In vitro bioactivity tests revealed the formation of apatite with nano-porous flake-like crystals on the composite surface that mimic HA structure of a human bone matrix. NCOC demonstrated efficient attachment and proliferation of osteoblast cells, promoting osteogenic differentiation by increasing expressions of RUNX2 and OPN. In vivo studies using rabbit back fascia demonstrated that NCOC displays better bone healing and biocompatibility than conventional bone substitute apatite in critical bone defect models. The degradation of calcium carbonate crystal in vivo does not compromise structural integrity of NCOC. Overall, our data showed that NCOC produced through self-setting reactions, presents advantages such as accelerated biodegradation and osteostimulative properties, making it a promising bone substitute for effective bone regeneration.

Abstract Image

将海洋珍珠岩转化为骨矿物质基质复合材料用于骨再生--体外和体内研究
Pinctada maxima 的珍珠质是一种天然的生物矿化基质,比人类出现早 700 万年。在这项研究中,我们将珍珠质转化为一种与多种正磷酸钙结合的自凝颗粒,这种颗粒可以重新组装哺乳动物的骨矿物质基质,从而诱导骨骼再生。以珍珠质为基础的正磷酸钙复合材料(NCOC)显示出 10 兆帕的压缩强度,优于人体小梁骨。体外生物活性测试显示,在复合材料表面形成了具有纳米多孔片状晶体的磷灰石,这种晶体模仿了人体骨基质的 HA 结构。NCOC 能有效附着和增殖成骨细胞,通过增加 RUNX2 和 OPN 的表达促进成骨分化。使用兔子背部筋膜进行的体内研究表明,在关键骨缺损模型中,NCOC 比传统骨替代物磷灰石具有更好的骨愈合能力和生物相容性。体内碳酸钙晶体的降解不会损害 NCOC 的结构完整性。总之,我们的数据表明,通过自固反应生产的 NCOC 具有生物降解速度快和骨刺激特性等优点,是一种很有前途的骨替代品,可用于有效的骨再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信