{"title":"Chainability of infinitely divisible measures","authors":"Shaul K. Bar-Lev , Gérard Letac","doi":"10.1016/j.spl.2024.110256","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> be a positive measure on <span><math><mi>R</mi></math></span> with Laplace transform <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mrow><mo>(</mo><mi>θ</mi><mo>)</mo></mrow></mrow></math></span> defined on a set whose interior <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span> is nonempty and let <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub><mo>=</mo><mo>log</mo><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></mrow></math></span> be its cumulant transform. Then <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely divisible iff <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. If also <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> is infinitely divisible, then <span><math><msubsup><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup></math></span> is a Laplace transform of some positive measure <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and so forth, until we reach a <span><math><mi>k</mi></math></span> such that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is not infinitely divisible. If such a <span><math><mi>k</mi></math></span> does not exist, we say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable. We say that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable of order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> if it is infinitely chainable and <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is the smallest <span><math><mi>k</mi></math></span> for which <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>.</mo></mrow></math></span> In this note, we prove that <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is infinitely chainable order <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> iff <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167715224002256/pdfft?md5=07337618e4ae45b99cc48ba49eb461e1&pid=1-s2.0-S0167715224002256-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224002256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a positive measure on with Laplace transform defined on a set whose interior is nonempty and let be its cumulant transform. Then is infinitely divisible iff is a Laplace transform of some positive measure . If also is infinitely divisible, then is a Laplace transform of some positive measure and so forth, until we reach a such that is not infinitely divisible. If such a does not exist, we say that is infinitely chainable. We say that is infinitely chainable of order if it is infinitely chainable and is the smallest for which In this note, we prove that is infinitely chainable order iff falls into one of three classes: the gamma, hyperbolic, or negative binomial classes, a somewhat surprising result.