{"title":"Compressive behavior and visco-hyperelastic constitutive of polyurethane elastomer over a wide range of strain rates","authors":"Guanxia Yang, Haijun Wu, Heng Dong, Fenglei Huang","doi":"10.1016/j.polymertesting.2024.108553","DOIUrl":null,"url":null,"abstract":"<div><p>Polyurethane elastomers (PUEs) will experience different strain rates in different application scenarios. Therefore, it is of great significance to study the mechanical properties of PUE under a wide range of strain rates and establish a constitutive model that considers strain rates with high accuracy and few parameters. In this study, the quasi-static and dynamic compression tests of two types of PUEs (PUE55 and PUE85) were carried out, and investigated the strain rate effect of the materials. Based on the Mooney-Rivlin hyperelastic model and the Prony series, a compressible visco-hyperelastic constitutive model for PUE was established. Different from the conventional constant relaxation time in Prony series, two relaxation times that vary exponentially with principal stretch were proposed based on the relaxation test to describe the strain rate effect of the material at low and high strain rate respectively. In addition, using the visco-hyperelastic constitutive model to obtain the model inputs of the Simplified rubber/foam model in LS-DYNA, the impact process of the Metal/PUE composite projectile was reproduced under different impact conditions through the finite element simulation. Simulation results verified the visco-hyperelastic model in generating numerical model material parameters and the rationality of the Simplified rubber/foam model in describing PUEs.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"138 ","pages":"Article 108553"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002307/pdfft?md5=b254f8eece2788ecff5959a601521ba3&pid=1-s2.0-S0142941824002307-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002307","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Polyurethane elastomers (PUEs) will experience different strain rates in different application scenarios. Therefore, it is of great significance to study the mechanical properties of PUE under a wide range of strain rates and establish a constitutive model that considers strain rates with high accuracy and few parameters. In this study, the quasi-static and dynamic compression tests of two types of PUEs (PUE55 and PUE85) were carried out, and investigated the strain rate effect of the materials. Based on the Mooney-Rivlin hyperelastic model and the Prony series, a compressible visco-hyperelastic constitutive model for PUE was established. Different from the conventional constant relaxation time in Prony series, two relaxation times that vary exponentially with principal stretch were proposed based on the relaxation test to describe the strain rate effect of the material at low and high strain rate respectively. In addition, using the visco-hyperelastic constitutive model to obtain the model inputs of the Simplified rubber/foam model in LS-DYNA, the impact process of the Metal/PUE composite projectile was reproduced under different impact conditions through the finite element simulation. Simulation results verified the visco-hyperelastic model in generating numerical model material parameters and the rationality of the Simplified rubber/foam model in describing PUEs.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.