Kinetics-controlled reaction pathway and microstructure development of Ti3SiC2-TiC composite processed through reactive spark plasma sintering

IF 3 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Kinetics-controlled reaction pathway and microstructure development of Ti3SiC2-TiC composite processed through reactive spark plasma sintering","authors":"","doi":"10.1016/j.mtla.2024.102213","DOIUrl":null,"url":null,"abstract":"<div><p>Reactive spark plasma sintering of ternary Ti-Si-C system was performed using three different powder precursors systems 3Ti/Si/2C, 3Ti/SiC/C and 2Ti/TiC/Si, to explore the fundamental physics behind Ti<sub>3</sub>SiC<sub>2</sub> MAX phase formation, its stability and microstructure development, and, finally linked with its hardening and contact induced damage tolerance. Phase evolution in Ti-Si-C system is a complex phenomenon, and, present experimental conditions never yield a phase pure Ti<sub>3</sub>SiC<sub>2</sub> MAX phase, rather results in varying volume fractions of Ti<sub>3</sub>SiC<sub>2</sub>-(Ti<sub>x</sub>,Si<sub>1-x</sub>)C solid solution due to non-equilibrium processing conditions exerted by SPS processing which restricts coherent site specific diffusional jumps and promotes the formation of (Ti, Si)C solid-solution instead of well reported non-stoichiometric TiC<sub>x</sub>. 3Ti/SiC/C precursor was the best candidate for processing composite with highest yields of Ti<sub>3</sub>SiC<sub>2</sub>. Phase evolution is guided by the free energy of formation of different phases and chemical affinity amongst the constituent elements rather than the equilibrium phase diagram of the Ti-Si-C system. Presence of free carbon, low temperature liquid phase and slow heating rate are the key requirements for forming phase pure Ti<sub>3</sub>SiC<sub>2</sub>, where excess free carbon reduces the stability of Ti<sub>3</sub>SiC<sub>2</sub> via decarburization. Non-equilibrium processing conditions impart nano-precipitation of coherent hexagonal Ti<sub>3</sub>SiC<sub>2</sub> precipitates within a cubic (Ti, Si)C matrix with a distinct orientation relation of (220)<sub>matrix</sub> ║(0004)<sub>precipitate</sub> and &lt;114&gt;<sub>matrix</sub> ║&lt;2–1–10&gt;<sub>precipitate</sub> that has never been reported, instead of growing highest density plane of <em>hcp</em>-on-<em>fcc</em> matrix. Coherency strain and fine interlocking microstructure of the as-processed composite experiences ≈36 % of enhancement in hardness followed by an improved contact damage for the as-processed composite.</p></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reactive spark plasma sintering of ternary Ti-Si-C system was performed using three different powder precursors systems 3Ti/Si/2C, 3Ti/SiC/C and 2Ti/TiC/Si, to explore the fundamental physics behind Ti3SiC2 MAX phase formation, its stability and microstructure development, and, finally linked with its hardening and contact induced damage tolerance. Phase evolution in Ti-Si-C system is a complex phenomenon, and, present experimental conditions never yield a phase pure Ti3SiC2 MAX phase, rather results in varying volume fractions of Ti3SiC2-(Tix,Si1-x)C solid solution due to non-equilibrium processing conditions exerted by SPS processing which restricts coherent site specific diffusional jumps and promotes the formation of (Ti, Si)C solid-solution instead of well reported non-stoichiometric TiCx. 3Ti/SiC/C precursor was the best candidate for processing composite with highest yields of Ti3SiC2. Phase evolution is guided by the free energy of formation of different phases and chemical affinity amongst the constituent elements rather than the equilibrium phase diagram of the Ti-Si-C system. Presence of free carbon, low temperature liquid phase and slow heating rate are the key requirements for forming phase pure Ti3SiC2, where excess free carbon reduces the stability of Ti3SiC2 via decarburization. Non-equilibrium processing conditions impart nano-precipitation of coherent hexagonal Ti3SiC2 precipitates within a cubic (Ti, Si)C matrix with a distinct orientation relation of (220)matrix ║(0004)precipitate and <114>matrix ║<2–1–10>precipitate that has never been reported, instead of growing highest density plane of hcp-on-fcc matrix. Coherency strain and fine interlocking microstructure of the as-processed composite experiences ≈36 % of enhancement in hardness followed by an improved contact damage for the as-processed composite.

Abstract Image

通过反应火花等离子烧结工艺加工的 Ti3SiC2-TiC 复合材料的动力学控制反应路径和微观结构发展
使用三种不同的粉末前驱体系统 3Ti/Si/2C、3Ti/SiC/C 和 2Ti/TiC/Si,对三元 Ti-Si-C 系统进行了反应火花等离子烧结,以探索 Ti3SiC2 MAX 相形成、其稳定性和微观结构发展背后的基本物理学原理,并最终将其与硬化和接触诱导损伤耐受性联系起来。Ti-Si-C 体系中的相演化是一种复杂的现象,目前的实验条件从未产生纯相 Ti3SiC2 MAX 相,相反,由于 SPS 加工所施加的非平衡加工条件限制了相干的特定位点扩散跃迁,促进了(Ti、Si)C 固溶体的形成,而不是已报道的非化学计量 TiCx,从而导致了不同体积分数的 Ti3SiC2-(Tix、Si1-x)C 固溶体。3Ti/SiC/C 前驱体是加工 Ti3SiC2 产率最高的复合材料的最佳候选材料。相演化是由不同相形成的自由能和组成元素之间的化学亲和力引导的,而不是由 Ti-Si-C 系统的平衡相图引导的。游离碳的存在、低温液相和缓慢的加热速度是形成纯相 Ti3SiC2 的关键条件,而过量的游离碳会通过脱碳作用降低 Ti3SiC2 的稳定性。在非平衡加工条件下,立方(Ti、Si)C 基体中会产生纳米沉淀物,即相干的六方 Ti3SiC2 沉淀物,这种沉淀物与 (220)matrix ║(0004)precipitate 和 <114>matrix║<2-1-10>沉淀物之间的取向关系是从未报道过的,而不是在 hcp-on-fcc 基体的最高密度面上生长。加工后复合材料的相干应变和细微交错微观结构使其硬度提高了≈36%,加工后复合材料的接触损伤也得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信