FalconScan: A hybrid UAV-crawler system for NDT inspection of elevated pipes in industrial plants

IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Fadl Abdellatif , Ali J. Alrasheed , Amjad Felemban , Ahmed Al Brahim , Hesham Jifri , Mohamed Abdelkader , Shehab Ahmed , Jeff S. Shamma
{"title":"FalconScan: A hybrid UAV-crawler system for NDT inspection of elevated pipes in industrial plants","authors":"Fadl Abdellatif ,&nbsp;Ali J. Alrasheed ,&nbsp;Amjad Felemban ,&nbsp;Ahmed Al Brahim ,&nbsp;Hesham Jifri ,&nbsp;Mohamed Abdelkader ,&nbsp;Shehab Ahmed ,&nbsp;Jeff S. Shamma","doi":"10.1016/j.mechatronics.2024.103239","DOIUrl":null,"url":null,"abstract":"<div><p>Periodic non-destructive testing (NDT) of pipes and tanks is vital in industrial plants, such as Oil &amp; Gas facilities, to proactively detect defects and corrosion before leaks and forced shutdowns occur. This paper presents a hybrid system, consisting of a UAV and a crawler, which enables detailed contact-based inspection of elevated pipes, in pursuit of eliminating the need for dangerous scaffolding and manual inspection to improve safety and reduce cost. Similar to avian animals, the UAV autonomously perches on the pipe to conserve energy. A small inspection crawling robot is carried by the UAV, and is subsequently released onto the pipe’s surface to inspect its health. The crawler uses magnetic wheels for agile mobility and houses an ultrasonic testing (UT) sensor to thoroughly scan the pipe and detect wall thinning, which is a precursor for leaks. Finally, the crawler re-docks with the UAV, which in turn detaches from the pipe to fly back home or inspect another pipe. The multi-robot system is designed for and tested on pipe diameters as small as 8 in.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"103 ","pages":"Article 103239"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824001041","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Periodic non-destructive testing (NDT) of pipes and tanks is vital in industrial plants, such as Oil & Gas facilities, to proactively detect defects and corrosion before leaks and forced shutdowns occur. This paper presents a hybrid system, consisting of a UAV and a crawler, which enables detailed contact-based inspection of elevated pipes, in pursuit of eliminating the need for dangerous scaffolding and manual inspection to improve safety and reduce cost. Similar to avian animals, the UAV autonomously perches on the pipe to conserve energy. A small inspection crawling robot is carried by the UAV, and is subsequently released onto the pipe’s surface to inspect its health. The crawler uses magnetic wheels for agile mobility and houses an ultrasonic testing (UT) sensor to thoroughly scan the pipe and detect wall thinning, which is a precursor for leaks. Finally, the crawler re-docks with the UAV, which in turn detaches from the pipe to fly back home or inspect another pipe. The multi-robot system is designed for and tested on pipe diameters as small as 8 in.

Abstract Image

FalconScan:用于工业厂房高架管道无损检测的无人机-爬虫混合系统
定期对管道和储罐进行无损检测(NDT)对石油天然气设施等工业厂房至关重要,可以在发生泄漏和被迫停产之前主动检测出缺陷和腐蚀。本文介绍了一种由无人机和爬行器组成的混合系统,该系统可对高架管道进行详细的接触式检测,从而消除了对危险的脚手架和人工检测的需求,提高了安全性并降低了成本。与鸟类动物类似,无人机可自主栖息在管道上,以节省能源。无人机携带一个小型检查爬行机器人,随后将其释放到管道表面,检查管道的健康状况。爬行器使用磁轮实现灵活移动,并装有一个超声波检测(UT)传感器,用于彻底扫描管道并检测管壁变薄,这是泄漏的前兆。最后,爬行器与无人机重新对接,然后无人机脱离管道飞回家或检查另一条管道。多机器人系统的设计和测试对象是直径小至 8 英寸的管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mechatronics
Mechatronics 工程技术-工程:电子与电气
CiteScore
5.90
自引率
9.10%
发文量
0
审稿时长
109 days
期刊介绍: Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信