Annexins: A family of calcium binding proteins with variety of roles in plant development and abiotic stress tolerance

IF 6.8 Q1 PLANT SCIENCES
Mohammad Faizan , Hadagali Ashoka , Fadime Karabulut , Pravej Alam , S. Maqbool Ahmed , Ira Khan , Sipan Soysal , Shamsul Hayat , Naved Ahmad
{"title":"Annexins: A family of calcium binding proteins with variety of roles in plant development and abiotic stress tolerance","authors":"Mohammad Faizan ,&nbsp;Hadagali Ashoka ,&nbsp;Fadime Karabulut ,&nbsp;Pravej Alam ,&nbsp;S. Maqbool Ahmed ,&nbsp;Ira Khan ,&nbsp;Sipan Soysal ,&nbsp;Shamsul Hayat ,&nbsp;Naved Ahmad","doi":"10.1016/j.stress.2024.100573","DOIUrl":null,"url":null,"abstract":"<div><p>Plant annexins are a multigene family of phospholipid-binding, calcium-dependent proteins that respond to signals and environmental challenges as plants grow and develop. Plant annexins are functionally unique due to their ATPase/GTPase, peroxidase, and calcium (Ca<sup>2+</sup>) channel-regulating activities. They play a major role in controlling many different aspects of cellular and metabolic functions, plant growth and development, and reactions to both biotic and abiotic environmental stimuli. In this review, we provide an overview of how intracellular and extracellular annexins work, mechanism of reactive oxygen species (ROS) and annexins, highlight recent developments of the roles of annexins in abiotic stress tolerance in plants, and emphasize the role of annexins in plant growth and development.</p></div>","PeriodicalId":34736,"journal":{"name":"Plant Stress","volume":"14 ","pages":"Article 100573"},"PeriodicalIF":6.8000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667064X24002264/pdfft?md5=51a71245e21577e21b4232a2c74b1ec8&pid=1-s2.0-S2667064X24002264-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Stress","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667064X24002264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant annexins are a multigene family of phospholipid-binding, calcium-dependent proteins that respond to signals and environmental challenges as plants grow and develop. Plant annexins are functionally unique due to their ATPase/GTPase, peroxidase, and calcium (Ca2+) channel-regulating activities. They play a major role in controlling many different aspects of cellular and metabolic functions, plant growth and development, and reactions to both biotic and abiotic environmental stimuli. In this review, we provide an overview of how intracellular and extracellular annexins work, mechanism of reactive oxygen species (ROS) and annexins, highlight recent developments of the roles of annexins in abiotic stress tolerance in plants, and emphasize the role of annexins in plant growth and development.

附件蛋白:钙结合蛋白家族,在植物发育和耐受非生物胁迫方面发挥着多种作用
植物附件蛋白是一个磷脂结合、依赖钙的多基因家族,在植物生长发育过程中对信号和环境挑战做出反应。植物附件蛋白因其 ATP 酶/GTP 酶、过氧化物酶和钙(Ca2+)通道调节活性而具有独特的功能。它们在控制细胞和代谢功能、植物生长和发育以及对生物和非生物环境刺激的反应等许多不同方面发挥着重要作用。在这篇综述中,我们概述了细胞内和细胞外附件蛋白的工作原理、活性氧(ROS)和附件蛋白的作用机制,重点介绍了附件蛋白在植物耐受非生物胁迫中的作用的最新进展,并强调了附件蛋白在植物生长和发育中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Stress
Plant Stress PLANT SCIENCES-
CiteScore
5.20
自引率
8.00%
发文量
76
审稿时长
63 days
期刊介绍: The journal Plant Stress deals with plant (or other photoautotrophs, such as algae, cyanobacteria and lichens) responses to abiotic and biotic stress factors that can result in limited growth and productivity. Such responses can be analyzed and described at a physiological, biochemical and molecular level. Experimental approaches/technologies aiming to improve growth and productivity with a potential for downstream validation under stress conditions will also be considered. Both fundamental and applied research manuscripts are welcome, provided that clear mechanistic hypotheses are made and descriptive approaches are avoided. In addition, high-quality review articles will also be considered, provided they follow a critical approach and stimulate thought for future research avenues. Plant Stress welcomes high-quality manuscripts related (but not limited) to interactions between plants and: Lack of water (drought) and excess (flooding), Salinity stress, Elevated temperature and/or low temperature (chilling and freezing), Hypoxia and/or anoxia, Mineral nutrient excess and/or deficiency, Heavy metals and/or metalloids, Plant priming (chemical, biological, physiological, nanomaterial, biostimulant) approaches for improved stress protection, Viral, phytoplasma, bacterial and fungal plant-pathogen interactions. The journal welcomes basic and applied research articles, as well as review articles and short communications. All submitted manuscripts will be subject to a thorough peer-reviewing process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信