Generalized identifiability of sums of squares

IF 0.8 2区 数学 Q2 MATHEMATICS
Giorgio Ottaviani , Ettore Teixeira Turatti
{"title":"Generalized identifiability of sums of squares","authors":"Giorgio Ottaviani ,&nbsp;Ettore Teixeira Turatti","doi":"10.1016/j.jalgebra.2024.07.052","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>f</em> be a homogeneous polynomial of even degree <em>d</em>. We study the decompositions <span><math><mi>f</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><msubsup><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> where <span><math><mi>deg</mi><mo>⁡</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>d</mi><mo>/</mo><mn>2</mn></math></span>. The minimal number of summands <em>r</em> is called the 2-rank of <em>f</em>, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbits, the problem becomes counting how many different <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbits of decomposition exist. We say that <em>f</em> is <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiable if there is a unique <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbit. We give sufficient conditions for generic and specific <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiability. Moreover, we show the generic <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiability of ternary forms.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021869324004496/pdfft?md5=d156824f16e82cf31b6b574e41ec038a&pid=1-s2.0-S0021869324004496-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let f be a homogeneous polynomial of even degree d. We study the decompositions f=i=1rfi2 where degfi=d/2. The minimal number of summands r is called the 2-rank of f, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into O(r)-orbits, the problem becomes counting how many different O(r)-orbits of decomposition exist. We say that f is O(r)-identifiable if there is a unique O(r)-orbit. We give sufficient conditions for generic and specific O(r)-identifiability. Moreover, we show the generic O(r)-identifiability of ternary forms.

平方和的广义可识别性
让 f 是偶数阶 d 的同次多项式。我们研究分解 f=∑i=1rfi2 其中 degfi=d/2 的分解。和的最小数目 r 称为 f 的 2-秩,因此 2-秩等于 1 的多项式正是正方形。这种分解从来都不是唯一的,它们被分为 O(r)-orbits ,问题是要计算存在多少个不同的 O(r)-orbits 分解。如果存在唯一的 O(r)-orbit ,我们就说 f 是 O(r)-identifiable 的。我们给出了一般和特殊 O(r)-identifiability 的充分条件。此外,我们还展示了三元形式的一般 O(r)-identifiability 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信