{"title":"Generalized identifiability of sums of squares","authors":"Giorgio Ottaviani , Ettore Teixeira Turatti","doi":"10.1016/j.jalgebra.2024.07.052","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>f</em> be a homogeneous polynomial of even degree <em>d</em>. We study the decompositions <span><math><mi>f</mi><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><msubsup><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> where <span><math><mi>deg</mi><mo></mo><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mi>d</mi><mo>/</mo><mn>2</mn></math></span>. The minimal number of summands <em>r</em> is called the 2-rank of <em>f</em>, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbits, the problem becomes counting how many different <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbits of decomposition exist. We say that <em>f</em> is <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiable if there is a unique <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-orbit. We give sufficient conditions for generic and specific <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiability. Moreover, we show the generic <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span>-identifiability of ternary forms.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021869324004496/pdfft?md5=d156824f16e82cf31b6b574e41ec038a&pid=1-s2.0-S0021869324004496-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004496","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let f be a homogeneous polynomial of even degree d. We study the decompositions where . The minimal number of summands r is called the 2-rank of f, so that the polynomials having 2-rank equal to 1 are exactly the squares. Such decompositions are never unique and they are divided into -orbits, the problem becomes counting how many different -orbits of decomposition exist. We say that f is -identifiable if there is a unique -orbit. We give sufficient conditions for generic and specific -identifiability. Moreover, we show the generic -identifiability of ternary forms.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.