Genetic switch selectively kills hepatocellular carcinoma cell based on microRNA and tissue-specific promoter

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuan-yuan Lu , Yi Li , Zhi-li Chen , Xiang-hua Xiong , Qing-yang Wang , Hao-long Dong , Chen Zhu , Jia-zhen Cui , Ao Hu , Lei Wang , Na Song , Gang Liu , Hui-peng Chen
{"title":"Genetic switch selectively kills hepatocellular carcinoma cell based on microRNA and tissue-specific promoter","authors":"Yuan-yuan Lu ,&nbsp;Yi Li ,&nbsp;Zhi-li Chen ,&nbsp;Xiang-hua Xiong ,&nbsp;Qing-yang Wang ,&nbsp;Hao-long Dong ,&nbsp;Chen Zhu ,&nbsp;Jia-zhen Cui ,&nbsp;Ao Hu ,&nbsp;Lei Wang ,&nbsp;Na Song ,&nbsp;Gang Liu ,&nbsp;Hui-peng Chen","doi":"10.1016/j.mcp.2024.101981","DOIUrl":null,"url":null,"abstract":"<div><p>The clinical treatment of hepatocellular carcinoma (HCC) is still a heavy burden worldwide. Intracellular microRNAs (miRNAs) commonly express abnormally in cancers, thus they are potential therapeutic targets for cancer treatment. miR-21 is upregulated in HCC whereas miR-122 is enriched in normal hepatocyte but downregulated in HCC. In our study, we first generated a reporter genetic switch compromising of miR-21 and miR-122 sponges as sensor, green fluorescent protein (GFP) as reporter gene and L7Ae:K-turn as regulatory element. The reporter expression was turned up in miR-21 enriched environment while turned down in miR-122 enriched environment, indicating that the reporter switch is able to respond distinctly to different miRNA environment. Furthermore, an AAT promoter, which is hepatocyte-specific, is applied to increase the specificity to hepatocyte. A killing switch with AAT promoter and an apoptosis-inducing element, Bax, in addition to miR-21 and miR-122 significantly inhibited cell viability in Huh-7 by 70 % and in HepG2 by 60 %. By contrast, cell viability was not affected in five non-HCC cells. Thus, we provide a novel feasible strategy to improve the safety of miRNA-based therapeutic agent to cancer.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890850824000331/pdfft?md5=f411ef273941f5ad14203bbffa219364&pid=1-s2.0-S0890850824000331-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850824000331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The clinical treatment of hepatocellular carcinoma (HCC) is still a heavy burden worldwide. Intracellular microRNAs (miRNAs) commonly express abnormally in cancers, thus they are potential therapeutic targets for cancer treatment. miR-21 is upregulated in HCC whereas miR-122 is enriched in normal hepatocyte but downregulated in HCC. In our study, we first generated a reporter genetic switch compromising of miR-21 and miR-122 sponges as sensor, green fluorescent protein (GFP) as reporter gene and L7Ae:K-turn as regulatory element. The reporter expression was turned up in miR-21 enriched environment while turned down in miR-122 enriched environment, indicating that the reporter switch is able to respond distinctly to different miRNA environment. Furthermore, an AAT promoter, which is hepatocyte-specific, is applied to increase the specificity to hepatocyte. A killing switch with AAT promoter and an apoptosis-inducing element, Bax, in addition to miR-21 and miR-122 significantly inhibited cell viability in Huh-7 by 70 % and in HepG2 by 60 %. By contrast, cell viability was not affected in five non-HCC cells. Thus, we provide a novel feasible strategy to improve the safety of miRNA-based therapeutic agent to cancer.

基于 microRNA 和组织特异性启动子的基因开关可选择性地杀死肝癌细胞。
肝细胞癌(HCC)的临床治疗仍然是全世界的沉重负担。miR-21在HCC中上调,而miR-122在正常肝细胞中富集,但在HCC中下调。在我们的研究中,我们首先生成了一个以 miR-21 和 miR-122 海绵为传感器、绿色荧光蛋白(GFP)为报告基因、L7Ae:K-turn 为调控元件的报告基因开关。在富含 miR-21 的环境中,报告基因的表达上升,而在富含 miR-122 的环境中,报告基因的表达下降,这表明报告基因开关能够对不同的 miRNA 环境做出不同的反应。此外,还应用了肝细胞特异性 AAT 启动子,以提高对肝细胞的特异性。除了 miR-21 和 miR-122 之外,带有 AAT 启动子和凋亡诱导因子 Bax 的杀伤开关还能显著抑制 Huh-7 细胞 70% 的存活率和 HepG2 细胞 60% 的存活率。相比之下,五种非HCC 细胞的细胞活力未受影响。因此,我们为提高基于 miRNA 的癌症治疗剂的安全性提供了一种新的可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信