PMILACG Model: A Predictive Model for Identifying Invasiveness of Lung Adenocarcinoma Based on High-Resolution CT-Determined Ground Glass Nodule Features.

IF 1.7 4区 医学 Q2 MEDICINE, GENERAL & INTERNAL
Tohoku Journal of Experimental Medicine Pub Date : 2025-03-07 Epub Date: 2025-01-30 DOI:10.1620/tjem.2024.J078
Bo Yan, Yifeng Jiang, Shijie Fu, Rong Li
{"title":"PMILACG Model: A Predictive Model for Identifying Invasiveness of Lung Adenocarcinoma Based on High-Resolution CT-Determined Ground Glass Nodule Features.","authors":"Bo Yan, Yifeng Jiang, Shijie Fu, Rong Li","doi":"10.1620/tjem.2024.J078","DOIUrl":null,"url":null,"abstract":"<p><p>The morphology of ground-glass nodule (GGN) under high-resolution computed tomography (HRCT) has been suggested to indicate different histological subtypes of lung adenocarcinoma (LUAD); however, existing studies only include the limited number of GGN characteristics, which lacks a systematic model for predicting invasive LUAD. This study aimed to construct a predictive model based on GGN features under HRCT for LUAD. A total of 1,189 surgical LUAD patients were enrolled, and their GGN-related features were assessed by 2 individual radiologists. The pathological diagnosis of the invasive LUAD was established by pathologic examination following surgery (including 1,073 invasive and 526 non-invasive LUAD). After adjustment by multivariate logistic regression, GGN diameter (OR = 1.382, 95% CI: 1.300-1.469), mean CT attenuation (OR = 1.007, 95% CI: 1.006-1.009), heterogeneous uniformity of density (OR = 2.151, 95% CI: 1.587-2.915), not defined nodule-lung interface (OR = 1.915, 95% CI: 1.384-2.651), GGN with spiculation (OR = 2.097, 95% CI: 1.519-2.896), type I (OR = 1.678, 95% CI: 1.216-2.371), and type II (OR = 3.577, 95% CI: 1.153-11.097) vessel changes were independent risk factors for invasive LUAD. In addition, a predictive model integrating these six independent GGN features was established (named as invasion of lung adenocarcinoma by GGN features (ILAG)), and receiver-operating characteristic curve illustrated that the ILAG model presented good predictive value for invasive LUAD (AUC: 0.905, 95% CI: 0.890-0.919). In conclusion, The ILAG predictive model, which integrates imaging features of GGN via HRCT, including diameter, mean CT attenuation, heterogeneous uniformity of density, not defined nodule-lung interface, GGN with spiculation, type I, and type II vessel changes, shows great potential for early estimation of LUAD invasiveness.</p>","PeriodicalId":23187,"journal":{"name":"Tohoku Journal of Experimental Medicine","volume":" ","pages":"13-20"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1620/tjem.2024.J078","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

The morphology of ground-glass nodule (GGN) under high-resolution computed tomography (HRCT) has been suggested to indicate different histological subtypes of lung adenocarcinoma (LUAD); however, existing studies only include the limited number of GGN characteristics, which lacks a systematic model for predicting invasive LUAD. This study aimed to construct a predictive model based on GGN features under HRCT for LUAD. A total of 1,189 surgical LUAD patients were enrolled, and their GGN-related features were assessed by 2 individual radiologists. The pathological diagnosis of the invasive LUAD was established by pathologic examination following surgery (including 1,073 invasive and 526 non-invasive LUAD). After adjustment by multivariate logistic regression, GGN diameter (OR = 1.382, 95% CI: 1.300-1.469), mean CT attenuation (OR = 1.007, 95% CI: 1.006-1.009), heterogeneous uniformity of density (OR = 2.151, 95% CI: 1.587-2.915), not defined nodule-lung interface (OR = 1.915, 95% CI: 1.384-2.651), GGN with spiculation (OR = 2.097, 95% CI: 1.519-2.896), type I (OR = 1.678, 95% CI: 1.216-2.371), and type II (OR = 3.577, 95% CI: 1.153-11.097) vessel changes were independent risk factors for invasive LUAD. In addition, a predictive model integrating these six independent GGN features was established (named as invasion of lung adenocarcinoma by GGN features (ILAG)), and receiver-operating characteristic curve illustrated that the ILAG model presented good predictive value for invasive LUAD (AUC: 0.905, 95% CI: 0.890-0.919). In conclusion, The ILAG predictive model, which integrates imaging features of GGN via HRCT, including diameter, mean CT attenuation, heterogeneous uniformity of density, not defined nodule-lung interface, GGN with spiculation, type I, and type II vessel changes, shows great potential for early estimation of LUAD invasiveness.

PMILACG 模型:基于高分辨率 CT 确定的磨玻璃结节特征识别肺腺癌侵袭性的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
4.50%
发文量
171
审稿时长
1 months
期刊介绍: Our mission is to publish peer-reviewed papers in all branches of medical sciences including basic medicine, social medicine, clinical medicine, nursing sciences and disaster-prevention science, and to present new information of exceptional novelty, importance and interest to a broad readership of the TJEM. The TJEM is open to original articles in all branches of medical sciences from authors throughout the world. The TJEM also covers the fields of disaster-prevention science, including earthquake archeology. Case reports, which advance significantly our knowledge on medical sciences or practice, are also accepted. Review articles, Letters to the Editor, Commentary, and News and Views will also be considered. In particular, the TJEM welcomes full papers requiring prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信