Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.).

IF 4.4 1区 农林科学 Q1 AGRONOMY
Salvatore Esposito, Samuela Palombieri, Paolo Vitale, Giuseppina Angione, Chiara D'Attilia, Francesca Taranto, Francesco Sestili, Pasquale De Vita
{"title":"Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.).","authors":"Salvatore Esposito, Samuela Palombieri, Paolo Vitale, Giuseppina Angione, Chiara D'Attilia, Francesca Taranto, Francesco Sestili, Pasquale De Vita","doi":"10.1007/s00122-024-04710-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Two allelic variants of Pp-A3 and Pp-B1 were identified in purple durum wheat. Molecular markers at both loci were developed and validated on an independent panel, offering a breakthrough for wheat improvement. Purple wheats are a class of cereals with pigmented kernels of particular interest for their antioxidant and anti-inflammatory properties. Although two complementary loci (Pp-B1 and Pp-A3), responsible for purple pericarp have been pinpointed in bread wheat (Triticum aestivum L.), in durum wheat (Triticum durum Desf.) the causative genes along with functional and non-functional alleles are still unknown. Here, using a quantitative trait loci (QTL) mapping approach on a RIL population derived from purple and non-purple durum wheat genotypes, we identified three major regions on chromosomes 2A, 3A, and 7B explaining the highest phenotypic variation (> 50%). Taking advantage of the Svevo genome, a MYB was reannotated on chromosome 7B and reported as a candidate for Pp-B1. An insertion of ~ 1.6 kb within the first exon led to a non-functional allele (TdPpm1b), whereas the functional allele (TdPpm1a) was characterized and released for the first time in durum wheat. Pp-A3 was instead identified as a duplicated gene, of which only one was functional. The promoter sequencing of the functional allele (TdPpb1a) revealed six 261-bp tandem repeats in purple durum wheat, whereas one unit (TdPpb1b) was found in the yellow once. Functional molecular markers at both loci were developed to precisely discriminate purple and not purple genotypes, representing a valuable resource for selecting superior purple durum lines at early growth stages. Overall, our results expand the understanding of the function of MYB and bHLH activators in durum wheat, paving new ways to explore cis-regulatory elements at the promoter level.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04710-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Two allelic variants of Pp-A3 and Pp-B1 were identified in purple durum wheat. Molecular markers at both loci were developed and validated on an independent panel, offering a breakthrough for wheat improvement. Purple wheats are a class of cereals with pigmented kernels of particular interest for their antioxidant and anti-inflammatory properties. Although two complementary loci (Pp-B1 and Pp-A3), responsible for purple pericarp have been pinpointed in bread wheat (Triticum aestivum L.), in durum wheat (Triticum durum Desf.) the causative genes along with functional and non-functional alleles are still unknown. Here, using a quantitative trait loci (QTL) mapping approach on a RIL population derived from purple and non-purple durum wheat genotypes, we identified three major regions on chromosomes 2A, 3A, and 7B explaining the highest phenotypic variation (> 50%). Taking advantage of the Svevo genome, a MYB was reannotated on chromosome 7B and reported as a candidate for Pp-B1. An insertion of ~ 1.6 kb within the first exon led to a non-functional allele (TdPpm1b), whereas the functional allele (TdPpm1a) was characterized and released for the first time in durum wheat. Pp-A3 was instead identified as a duplicated gene, of which only one was functional. The promoter sequencing of the functional allele (TdPpb1a) revealed six 261-bp tandem repeats in purple durum wheat, whereas one unit (TdPpb1b) was found in the yellow once. Functional molecular markers at both loci were developed to precisely discriminate purple and not purple genotypes, representing a valuable resource for selecting superior purple durum lines at early growth stages. Overall, our results expand the understanding of the function of MYB and bHLH activators in durum wheat, paving new ways to explore cis-regulatory elements at the promoter level.

Abstract Image

硬粒小麦(Triticum durum Desf.)
关键信息:在紫色硬粒小麦中发现了 Pp-A3 和 Pp-B1 的两个等位基因变异。这两个位点上的分子标记都已开发出来,并在一个独立的面板上进行了验证,为小麦改良提供了突破性进展。紫小麦是一类具有色素颗粒的谷物,因其抗氧化和抗炎特性而备受关注。虽然在面包小麦(Triticum aestivum L.)中已经确定了两个导致紫色果皮的互补基因座(Pp-B1 和 Pp-A3),但在硬质小麦(Triticum durum Desf.)中,致病基因以及功能性和非功能性等位基因仍然未知。在此,我们利用定量性状位点(QTL)绘图方法,在紫色和非紫色硬质小麦基因型的 RIL 群体中确定了染色体 2A、3A 和 7B 上的三个主要区域,这三个区域解释了最高的表型变异(> 50%)。利用 Svevo 基因组的优势,我们对 7B 染色体上的一个 MYB 进行了重新标注,并将其报告为 Pp-B1 的候选基因。第一个外显子内约 1.6 kb 的插入导致了一个无功能等位基因(TdPpm1b)的出现,而功能等位基因(TdPpm1a)则首次在硬粒小麦中得到表征和释放。Pp-A3 被鉴定为一个重复基因,其中只有一个是功能基因。功能性等位基因(TdPpb1a)的启动子测序在紫色硬粒小麦中发现了六个 261-bp 的串联重复,而在黄色小麦中发现了一个单位(TdPpb1b)。在这两个位点上开发的功能分子标记可精确区分紫色和非紫色基因型,是在早期生长阶段选育紫色硬粒小麦优良品系的宝贵资源。总之,我们的研究结果拓展了人们对硬粒小麦中 MYB 和 bHLH 激活因子功能的认识,为在启动子水平探索顺式调控元件铺平了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信