{"title":"Shotgun metagenomic analysis reveals the emergence of plasmid-encoded mcr-5.1 gene in hospital wastewater in Bangladesh","authors":"","doi":"10.1016/j.jgar.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>Colistin is considered the last line therapy for treating multidrug-resistant (MDR) bacterial infections in humans. Therefore, the spread of colistin resistance poses a serious threat to human, and environmental health. Though Bangladesh is known as a hotspot of AMR, limited studies have been carried out regarding the status of colistin resistance. Information on the emerging bacterial resistance is inevitable for protecting public health. Nowadays, wastewater analysis has been prioritized for metagenomics-enabled AMR surveillance. Our study on the metagenomic analysis of untreated hospital effluents first detected the colistin resistance-conferring <em>mcr-5.1</em> gene in the hospital environment of Bangladesh. Phylogenetic tree and <em>in silico</em> AMR analysis confirmed the detection of this <em>mcr-5</em> variant, which is located in a plasmid contig. The plasmid was untypeable and belonged to the bacteria from the Enterobacteriaceae family. The <em>mcr-5.1</em> operon was embedded in a Tn3 transposon, suggesting the mobility of the gene. <em>Tnshfr1</em> transposon, chromate resistance protein ChrB, DNA invertase hin, and two MFS-type proteins were present in the genetic environment of <em>mcr-5.1</em>. Our findings provide evidence of the occurrence of <em>mcr-5.1</em> in a hospital environment in Bangladesh, which calls for immediate attention and effective measures to contain the dissemination of colistin resistance in the environment.</p></div>","PeriodicalId":15936,"journal":{"name":"Journal of global antimicrobial resistance","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213716524001589/pdfft?md5=7fca164298a25475fe1646d3e994f5b2&pid=1-s2.0-S2213716524001589-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of global antimicrobial resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213716524001589","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Colistin is considered the last line therapy for treating multidrug-resistant (MDR) bacterial infections in humans. Therefore, the spread of colistin resistance poses a serious threat to human, and environmental health. Though Bangladesh is known as a hotspot of AMR, limited studies have been carried out regarding the status of colistin resistance. Information on the emerging bacterial resistance is inevitable for protecting public health. Nowadays, wastewater analysis has been prioritized for metagenomics-enabled AMR surveillance. Our study on the metagenomic analysis of untreated hospital effluents first detected the colistin resistance-conferring mcr-5.1 gene in the hospital environment of Bangladesh. Phylogenetic tree and in silico AMR analysis confirmed the detection of this mcr-5 variant, which is located in a plasmid contig. The plasmid was untypeable and belonged to the bacteria from the Enterobacteriaceae family. The mcr-5.1 operon was embedded in a Tn3 transposon, suggesting the mobility of the gene. Tnshfr1 transposon, chromate resistance protein ChrB, DNA invertase hin, and two MFS-type proteins were present in the genetic environment of mcr-5.1. Our findings provide evidence of the occurrence of mcr-5.1 in a hospital environment in Bangladesh, which calls for immediate attention and effective measures to contain the dissemination of colistin resistance in the environment.
期刊介绍:
The Journal of Global Antimicrobial Resistance (JGAR) is a quarterly online journal run by an international Editorial Board that focuses on the global spread of antibiotic-resistant microbes.
JGAR is a dedicated journal for all professionals working in research, health care, the environment and animal infection control, aiming to track the resistance threat worldwide and provides a single voice devoted to antimicrobial resistance (AMR).
Featuring peer-reviewed and up to date research articles, reviews, short notes and hot topics JGAR covers the key topics related to antibacterial, antiviral, antifungal and antiparasitic resistance.