Diandian Wang, Yaxi Zhou, Jian Zhao, Chao Ren, Wenjie Yan
{"title":"Oral Yak Whey Protein Can Alleviate UV-Induced Skin Photoaging and Modulate Gut Microbiota Composition.","authors":"Diandian Wang, Yaxi Zhou, Jian Zhao, Chao Ren, Wenjie Yan","doi":"10.3390/foods13162621","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive UV exposure can lead to skin roughness, wrinkles, pigmentation, and reduced elasticity, with severe cases potentially causing skin cancer. Nowadays, various anti-photoaging strategies have been developed to maintain skin health. Among them, dietary supplements with anti-photoaging properties are gaining increasing attention. Yak whey protein (YWP) possesses multiple benefits, including anti-inflammatory, antioxidant, and immune-boosting properties, effectively protecting the skin. This study used a mixed UVA and UVB light source to irradiate a nude mouse model, exploring the advantages of YWP in anti-photoaging and regulating gut microbiota. The results indicated that YWP alleviated UV-induced skin damage, wrinkles, dryness, and reduced elasticity by inhibiting oxidative stress, inflammatory factors (IL-1α, IL-6, and TNF-α), and matrix metalloproteinases (MMP-1, MMP-3, and MMP-12), thereby increasing the levels of elastin, type I collagen, and type III collagen in the extracellular matrix (ECM). Additionally, YWP significantly improved the abundance of <i>Firmicutes</i> and <i>Bacteroidota</i> in the gut microbiota of mice, promoting the growth of beneficial bacteria such as <i>Lachnospiraceae_NK4A136_group</i>, <i>Ruminococcus_torques_group</i>, and <i>Clostridia_UCG_014</i>, mitigating the dysbiosis caused by photoaging. These findings underscore the potential of YWP in anti-photoaging and gut microbiota improvement, highlighting it as a promising functional food for enhancing skin and gut health.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11354105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13162621","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive UV exposure can lead to skin roughness, wrinkles, pigmentation, and reduced elasticity, with severe cases potentially causing skin cancer. Nowadays, various anti-photoaging strategies have been developed to maintain skin health. Among them, dietary supplements with anti-photoaging properties are gaining increasing attention. Yak whey protein (YWP) possesses multiple benefits, including anti-inflammatory, antioxidant, and immune-boosting properties, effectively protecting the skin. This study used a mixed UVA and UVB light source to irradiate a nude mouse model, exploring the advantages of YWP in anti-photoaging and regulating gut microbiota. The results indicated that YWP alleviated UV-induced skin damage, wrinkles, dryness, and reduced elasticity by inhibiting oxidative stress, inflammatory factors (IL-1α, IL-6, and TNF-α), and matrix metalloproteinases (MMP-1, MMP-3, and MMP-12), thereby increasing the levels of elastin, type I collagen, and type III collagen in the extracellular matrix (ECM). Additionally, YWP significantly improved the abundance of Firmicutes and Bacteroidota in the gut microbiota of mice, promoting the growth of beneficial bacteria such as Lachnospiraceae_NK4A136_group, Ruminococcus_torques_group, and Clostridia_UCG_014, mitigating the dysbiosis caused by photoaging. These findings underscore the potential of YWP in anti-photoaging and gut microbiota improvement, highlighting it as a promising functional food for enhancing skin and gut health.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds