Ana Rosa Hernández-Téllez, Gustavo Alejandro Rodríguez-Montes de Oca, José Cristóbal Román-Reyes, Juan Antonio Tello-Ballinas, Mario Alberto Galaviz-Espinoza, Carlos Alfonso Álvarez-González
{"title":"Histological study of the development of the digestive system during larval feeding in the pike silverside Chirostoma estor.","authors":"Ana Rosa Hernández-Téllez, Gustavo Alejandro Rodríguez-Montes de Oca, José Cristóbal Román-Reyes, Juan Antonio Tello-Ballinas, Mario Alberto Galaviz-Espinoza, Carlos Alfonso Álvarez-González","doi":"10.1007/s10695-024-01396-5","DOIUrl":null,"url":null,"abstract":"<p><p>Chirostoma estor (Jordan, 1879) is an endemic freshwater species with a high potential for aquaculture; however, as in many other fish, larviculture of this species is the most critical stage, in which the higher mortality rates. Therefore, it is necessary to fully describe the development of the digestive system to establish better feeding protocols in the larval culture of C. estor, both for aquaculture and restoration purposes. In the present study, larviculture was carried out from hatching to 20 days after hatching (DAH). The organisms were fed with the rotifer Brachionus plicatilis from 2 to 14 DAH, and nauplii of Artemia sp. from 15 to 20 DAH. A total of 12 organisms (0, 3, 5, 10, 15, and 20 DAH) were taken for size and weight growth and histological and histochemical analysis. The histological analysis indicated that after 3 DAH, the opening of the mouth and anus was observed, coinciding with the beginning of exogenous feeding. In addition, the digestive system developed, with differentiation of the oropharyngeal sections, esophagus, and intestine, folding of the intestinal mucosa, as well as associated organs (liver and pancreas) that reach their maximum development at 20 DAH. Thus, C. estor at this stage of development can digest and absorb nutrients despite being an agastric fish. The results obtained in this study will facilitate a better understanding of the ontogenetic morphophysiological development processes, associated with the transition of larvae to exogenous feeding, which ensures a higher percentage of survival during larval development and of course, adds to the diversity ontogenetics of teleostean.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":" ","pages":"2437-2452"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10695-024-01396-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chirostoma estor (Jordan, 1879) is an endemic freshwater species with a high potential for aquaculture; however, as in many other fish, larviculture of this species is the most critical stage, in which the higher mortality rates. Therefore, it is necessary to fully describe the development of the digestive system to establish better feeding protocols in the larval culture of C. estor, both for aquaculture and restoration purposes. In the present study, larviculture was carried out from hatching to 20 days after hatching (DAH). The organisms were fed with the rotifer Brachionus plicatilis from 2 to 14 DAH, and nauplii of Artemia sp. from 15 to 20 DAH. A total of 12 organisms (0, 3, 5, 10, 15, and 20 DAH) were taken for size and weight growth and histological and histochemical analysis. The histological analysis indicated that after 3 DAH, the opening of the mouth and anus was observed, coinciding with the beginning of exogenous feeding. In addition, the digestive system developed, with differentiation of the oropharyngeal sections, esophagus, and intestine, folding of the intestinal mucosa, as well as associated organs (liver and pancreas) that reach their maximum development at 20 DAH. Thus, C. estor at this stage of development can digest and absorb nutrients despite being an agastric fish. The results obtained in this study will facilitate a better understanding of the ontogenetic morphophysiological development processes, associated with the transition of larvae to exogenous feeding, which ensures a higher percentage of survival during larval development and of course, adds to the diversity ontogenetics of teleostean.
期刊介绍:
Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.