Hybrid Predictive Machine Learning Model for the Prediction of Immunodominant Peptides of Respiratory Syncytial Virus.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Syed Nisar Hussain Bukhari, Kingsley A Ogudo
{"title":"Hybrid Predictive Machine Learning Model for the Prediction of Immunodominant Peptides of Respiratory Syncytial Virus.","authors":"Syed Nisar Hussain Bukhari, Kingsley A Ogudo","doi":"10.3390/bioengineering11080791","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory syncytial virus (RSV) is a common respiratory pathogen that infects the human lungs and respiratory tract, often causing symptoms similar to the common cold. Vaccination is the most effective strategy for managing viral outbreaks. Currently, extensive efforts are focused on developing a vaccine for RSV. Traditional vaccine design typically involves using an attenuated form of the pathogen to elicit an immune response. In contrast, peptide-based vaccines (PBVs) aim to identify and chemically synthesize specific immunodominant peptides (IPs), known as T-cell epitopes (TCEs), to induce a targeted immune response. Despite their potential for enhancing vaccine safety and immunogenicity, PBVs have received comparatively less attention. Identifying IPs for PBV design through conventional wet-lab experiments is challenging, costly, and time-consuming. Machine learning (ML) techniques offer a promising alternative, accurately predicting TCEs and significantly reducing the time and cost of vaccine development. This study proposes the development and evaluation of eight hybrid ML predictive models created through the permutations and combinations of two classification methods, two feature weighting techniques, and two feature selection algorithms, all aimed at predicting the TCEs of RSV. The models were trained using the experimentally determined TCEs and non-TCE sequences acquired from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) repository. The hybrid model composed of the XGBoost (XGB) classifier, chi-squared (ChST) weighting technique, and backward search (BST) as the optimal feature selection algorithm (ChST-BST-XGB) was identified as the best model, achieving an accuracy, sensitivity, specificity, F1 score, AUC, precision, and MCC of 97.10%, 0.98, 0.97, 0.98, 0.99, 0.99, and 0.96, respectively. Additionally, K-fold cross-validation (KFCV) was performed to ensure the model's reliability and an average accuracy of 97.21% was recorded for the ChST-BST-XGB model. The results indicate that the hybrid XGBoost model consistently outperforms other hybrid approaches. The epitopes predicted by the proposed model may serve as promising vaccine candidates for RSV, subject to in vitro and in vivo scientific assessments. This model can assist the scientific community in expediting the screening of active TCE candidates for RSV, ultimately saving time and resources in vaccine development.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080791","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory syncytial virus (RSV) is a common respiratory pathogen that infects the human lungs and respiratory tract, often causing symptoms similar to the common cold. Vaccination is the most effective strategy for managing viral outbreaks. Currently, extensive efforts are focused on developing a vaccine for RSV. Traditional vaccine design typically involves using an attenuated form of the pathogen to elicit an immune response. In contrast, peptide-based vaccines (PBVs) aim to identify and chemically synthesize specific immunodominant peptides (IPs), known as T-cell epitopes (TCEs), to induce a targeted immune response. Despite their potential for enhancing vaccine safety and immunogenicity, PBVs have received comparatively less attention. Identifying IPs for PBV design through conventional wet-lab experiments is challenging, costly, and time-consuming. Machine learning (ML) techniques offer a promising alternative, accurately predicting TCEs and significantly reducing the time and cost of vaccine development. This study proposes the development and evaluation of eight hybrid ML predictive models created through the permutations and combinations of two classification methods, two feature weighting techniques, and two feature selection algorithms, all aimed at predicting the TCEs of RSV. The models were trained using the experimentally determined TCEs and non-TCE sequences acquired from the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) repository. The hybrid model composed of the XGBoost (XGB) classifier, chi-squared (ChST) weighting technique, and backward search (BST) as the optimal feature selection algorithm (ChST-BST-XGB) was identified as the best model, achieving an accuracy, sensitivity, specificity, F1 score, AUC, precision, and MCC of 97.10%, 0.98, 0.97, 0.98, 0.99, 0.99, and 0.96, respectively. Additionally, K-fold cross-validation (KFCV) was performed to ensure the model's reliability and an average accuracy of 97.21% was recorded for the ChST-BST-XGB model. The results indicate that the hybrid XGBoost model consistently outperforms other hybrid approaches. The epitopes predicted by the proposed model may serve as promising vaccine candidates for RSV, subject to in vitro and in vivo scientific assessments. This model can assist the scientific community in expediting the screening of active TCE candidates for RSV, ultimately saving time and resources in vaccine development.

用于预测呼吸道合胞病毒免疫显性肽的混合预测机器学习模型。
呼吸道合胞病毒(RSV)是一种常见的呼吸道病原体,会感染人的肺部和呼吸道,通常会引起类似普通感冒的症状。接种疫苗是控制病毒爆发的最有效策略。目前,人们正集中精力研发 RSV 疫苗。传统的疫苗设计通常是使用病原体的减毒形式来引起免疫反应。相比之下,基于肽的疫苗 (PBV) 则旨在识别和化学合成特异性免疫优势肽 (IP),即 T 细胞表位 (TCE),以诱导靶向免疫反应。尽管 PBV 具有提高疫苗安全性和免疫原性的潜力,但其受到的关注却相对较少。通过传统的湿实验室实验来识别用于 PBV 设计的 IPs 具有挑战性、成本高、耗时长。机器学习(ML)技术提供了一种前景广阔的替代方法,它能准确预测 TCEs 并大大减少疫苗开发的时间和成本。本研究建议开发和评估八个混合 ML 预测模型,这些模型是通过两种分类方法、两种特征加权技术和两种特征选择算法的排列和组合创建的,目的都是预测 RSV 的 TCEs。这些模型是利用从细菌和病毒生物信息资源中心(BV-BRC)资源库中获取的实验确定的 TCE 和非 TCE 序列进行训练的。由 XGBoost(XGB)分类器、Chi-squared(ChST)加权技术和作为最佳特征选择算法的后向搜索(BST)(ChST-BST-XGB)组成的混合模型被确定为最佳模型,其准确率、灵敏度、特异性、F1 分数、AUC、精确度和 MCC 分别为 97.10%、0.98、0.97、0.98、0.99、0.99 和 0.96。此外,为了确保模型的可靠性,还进行了 K 折交叉验证(KFCV),ChST-BST-XGB 模型的平均准确率为 97.21%。结果表明,混合 XGBoost 模型始终优于其他混合方法。根据体外和体内科学评估,该模型预测的表位可作为 RSV 有希望的候选疫苗。该模型可帮助科学界加快筛选治疗 RSV 的活性 TCE 候选物,最终节省疫苗开发的时间和资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信