Davaine Joel Ndongo Sonfack, Clémence Tanguay Boivin, Lydia Touzel Deschênes, Thibault Maurand, Célina Maguemoun, François Berthod, François Gros-Louis, Pierre-Olivier Champagne
{"title":"Bioengineering Human Upper Respiratory Mucosa: A Systematic Review of the State of the Art of Cell Culture Techniques.","authors":"Davaine Joel Ndongo Sonfack, Clémence Tanguay Boivin, Lydia Touzel Deschênes, Thibault Maurand, Célina Maguemoun, François Berthod, François Gros-Louis, Pierre-Olivier Champagne","doi":"10.3390/bioengineering11080826","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The upper respiratory mucosa plays a crucial role in both the physical integrity and immunological function of the respiratory tract. However, in certain situations such as infections, trauma, or surgery, it might sustain damage. Tissue engineering, a field of regenerative medicine, has found applications in various medical fields including but not limited to plastic surgery, ophthalmology, and urology. However, its application to the respiratory system remains somewhat difficult due to the complex morphology and histology of the upper respiratory tract. To date, a culture protocol for producing a handleable, well-differentiated nasal mucosa has yet to be developed. The objective of this review is to describe the current state of research pertaining to cell culture techniques used for producing autologous healthy human upper respiratory cells and mucosal tissues, as well as describe its clinical applications.</p><p><strong>Methods: </strong>A search of the relevant literature was carried out with no time restriction across Embase, Cochrane, PubMed, and Medline Ovid databases. Keywords related to \"respiratory mucosa\" and \"culture techniques of the human airway\" were the focus of the search strategy for this review. The risk of bias in retained studies was assessed using the Joanna Briggs Institute's (JBI) critical appraisal tools for qualitative research. A narrative synthesis of our results was then conducted.</p><p><strong>Results: </strong>A total of 33 studies were included in this review, and thirteen of these focused solely on developing a cell culture protocol without further use. The rest of the studies used their own developed protocol for various applications such as cystic fibrosis, pharmacological, and viral research. One study was able to develop a promising model for nasal mucosa that could be employed as a replacement in nasotracheal reconstructive surgery.</p><p><strong>Conclusions: </strong>This systematic review extensively explored the current state of research regarding cell culture techniques for producing tissue-engineered nasal mucosa. Bioengineering the nasal mucosa holds great potential for clinical use. However, further research on mechanical properties is essential, as the comparison of engineered tissues is currently focused on morphology rather than comprehensive mechanical assessments.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11352167/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080826","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The upper respiratory mucosa plays a crucial role in both the physical integrity and immunological function of the respiratory tract. However, in certain situations such as infections, trauma, or surgery, it might sustain damage. Tissue engineering, a field of regenerative medicine, has found applications in various medical fields including but not limited to plastic surgery, ophthalmology, and urology. However, its application to the respiratory system remains somewhat difficult due to the complex morphology and histology of the upper respiratory tract. To date, a culture protocol for producing a handleable, well-differentiated nasal mucosa has yet to be developed. The objective of this review is to describe the current state of research pertaining to cell culture techniques used for producing autologous healthy human upper respiratory cells and mucosal tissues, as well as describe its clinical applications.
Methods: A search of the relevant literature was carried out with no time restriction across Embase, Cochrane, PubMed, and Medline Ovid databases. Keywords related to "respiratory mucosa" and "culture techniques of the human airway" were the focus of the search strategy for this review. The risk of bias in retained studies was assessed using the Joanna Briggs Institute's (JBI) critical appraisal tools for qualitative research. A narrative synthesis of our results was then conducted.
Results: A total of 33 studies were included in this review, and thirteen of these focused solely on developing a cell culture protocol without further use. The rest of the studies used their own developed protocol for various applications such as cystic fibrosis, pharmacological, and viral research. One study was able to develop a promising model for nasal mucosa that could be employed as a replacement in nasotracheal reconstructive surgery.
Conclusions: This systematic review extensively explored the current state of research regarding cell culture techniques for producing tissue-engineered nasal mucosa. Bioengineering the nasal mucosa holds great potential for clinical use. However, further research on mechanical properties is essential, as the comparison of engineered tissues is currently focused on morphology rather than comprehensive mechanical assessments.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering