Assessing the Value of Imaging Data in Machine Learning Models to Predict Patient-Reported Outcome Measures in Knee Osteoarthritis Patients.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Abhinav Nair, M Abdulhadi Alagha, Justin Cobb, Gareth Jones
{"title":"Assessing the Value of Imaging Data in Machine Learning Models to Predict Patient-Reported Outcome Measures in Knee Osteoarthritis Patients.","authors":"Abhinav Nair, M Abdulhadi Alagha, Justin Cobb, Gareth Jones","doi":"10.3390/bioengineering11080824","DOIUrl":null,"url":null,"abstract":"<p><p>Knee osteoarthritis (OA) affects over 650 million patients worldwide. Total knee replacement is aimed at end-stage OA to relieve symptoms of pain, stiffness and reduced mobility. However, the role of imaging modalities in monitoring symptomatic disease progression remains unclear. This study aimed to compare machine learning (ML) models, with and without imaging features, in predicting the two-year Western Ontario and McMaster Universities Arthritis Index (WOMAC) score for knee OA patients. We included 2408 patients from the Osteoarthritis Initiative (OAI) database, with 629 patients from the Multicenter Osteoarthritis Study (MOST) database. The clinical dataset included 18 clinical features, while the imaging dataset contained an additional 10 imaging features. Minimal Clinically Important Difference (MCID) was set to 24, reflecting meaningful physical impairment. Clinical and imaging dataset models produced similar area under curve (AUC) scores, highlighting low differences in performance AUC < 0.025). For both clinical and imaging datasets, Gradient Boosting Machine (GBM) models performed the best in the external validation, with a clinically acceptable AUC of 0.734 (95% CI 0.687-0.781) and 0.747 (95% CI 0.701-0.792), respectively. The five features identified included educational background, family history of osteoarthritis, co-morbidities, use of osteoporosis medications and previous knee procedures. This is the first study to demonstrate that ML models achieve comparable performance with and without imaging features.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080824","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Knee osteoarthritis (OA) affects over 650 million patients worldwide. Total knee replacement is aimed at end-stage OA to relieve symptoms of pain, stiffness and reduced mobility. However, the role of imaging modalities in monitoring symptomatic disease progression remains unclear. This study aimed to compare machine learning (ML) models, with and without imaging features, in predicting the two-year Western Ontario and McMaster Universities Arthritis Index (WOMAC) score for knee OA patients. We included 2408 patients from the Osteoarthritis Initiative (OAI) database, with 629 patients from the Multicenter Osteoarthritis Study (MOST) database. The clinical dataset included 18 clinical features, while the imaging dataset contained an additional 10 imaging features. Minimal Clinically Important Difference (MCID) was set to 24, reflecting meaningful physical impairment. Clinical and imaging dataset models produced similar area under curve (AUC) scores, highlighting low differences in performance AUC < 0.025). For both clinical and imaging datasets, Gradient Boosting Machine (GBM) models performed the best in the external validation, with a clinically acceptable AUC of 0.734 (95% CI 0.687-0.781) and 0.747 (95% CI 0.701-0.792), respectively. The five features identified included educational background, family history of osteoarthritis, co-morbidities, use of osteoporosis medications and previous knee procedures. This is the first study to demonstrate that ML models achieve comparable performance with and without imaging features.

评估成像数据在机器学习模型中的价值,以预测膝关节骨性关节炎患者的患者报告结果指标。
膝关节骨关节炎(OA)影响着全球 6.5 亿多患者。全膝关节置换术主要针对终末期 OA,以缓解疼痛、僵硬和行动不便等症状。然而,成像模式在监测症状性疾病进展方面的作用仍不明确。本研究旨在比较有成像特征和无成像特征的机器学习(ML)模型在预测膝关节OA患者两年后的西安大略和麦克马斯特大学关节炎指数(WOMAC)评分方面的作用。我们纳入了骨关节炎倡议(OAI)数据库中的2408名患者和多中心骨关节炎研究(MOST)数据库中的629名患者。临床数据集包括 18 个临床特征,而成像数据集则包括另外 10 个成像特征。最小临床意义差异(MCID)设定为 24,反映了有意义的身体损伤。临床数据集和成像数据集模型产生了相似的曲线下面积(AUC)得分,突出显示了较低的性能差异(AUC < 0.025)。对于临床和成像数据集,梯度提升机(GBM)模型在外部验证中表现最佳,其临床可接受的 AUC 分别为 0.734(95% CI 0.687-0.781)和 0.747(95% CI 0.701-0.792)。确定的五个特征包括教育背景、骨关节炎家族史、合并疾病、使用骨质疏松症药物和既往膝关节手术。这是第一项证明有成像特征和无成像特征的 ML 模型性能相当的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信