Novel Hybrid Quantum Architecture-Based Lung Cancer Detection Using Chest Radiograph and Computerized Tomography Images.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Jason Elroy Martis, Sannidhan M S, Balasubramani R, A M Mutawa, M Murugappan
{"title":"Novel Hybrid Quantum Architecture-Based Lung Cancer Detection Using Chest Radiograph and Computerized Tomography Images.","authors":"Jason Elroy Martis, Sannidhan M S, Balasubramani R, A M Mutawa, M Murugappan","doi":"10.3390/bioengineering11080799","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer, the second most common type of cancer worldwide, presents significant health challenges. Detecting this disease early is essential for improving patient outcomes and simplifying treatment. In this study, we propose a hybrid framework that combines deep learning (DL) with quantum computing to enhance the accuracy of lung cancer detection using chest radiographs (CXR) and computerized tomography (CT) images. Our system utilizes pre-trained models for feature extraction and quantum circuits for classification, achieving state-of-the-art performance in various metrics. Not only does our system achieve an overall accuracy of 92.12%, it also excels in other crucial performance measures, such as sensitivity (94%), specificity (90%), F1-score (93%), and precision (92%). These results demonstrate that our hybrid approach can more accurately identify lung cancer signatures compared to traditional methods. Moreover, the incorporation of quantum computing enhances processing speed and scalability, making our system a promising tool for early lung cancer screening and diagnosis. By leveraging the strengths of quantum computing, our approach surpasses traditional methods in terms of speed, accuracy, and efficiency. This study highlights the potential of hybrid computational technologies to transform early cancer detection, paving the way for wider clinical applications and improved patient care outcomes.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351577/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080799","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lung cancer, the second most common type of cancer worldwide, presents significant health challenges. Detecting this disease early is essential for improving patient outcomes and simplifying treatment. In this study, we propose a hybrid framework that combines deep learning (DL) with quantum computing to enhance the accuracy of lung cancer detection using chest radiographs (CXR) and computerized tomography (CT) images. Our system utilizes pre-trained models for feature extraction and quantum circuits for classification, achieving state-of-the-art performance in various metrics. Not only does our system achieve an overall accuracy of 92.12%, it also excels in other crucial performance measures, such as sensitivity (94%), specificity (90%), F1-score (93%), and precision (92%). These results demonstrate that our hybrid approach can more accurately identify lung cancer signatures compared to traditional methods. Moreover, the incorporation of quantum computing enhances processing speed and scalability, making our system a promising tool for early lung cancer screening and diagnosis. By leveraging the strengths of quantum computing, our approach surpasses traditional methods in terms of speed, accuracy, and efficiency. This study highlights the potential of hybrid computational technologies to transform early cancer detection, paving the way for wider clinical applications and improved patient care outcomes.

利用胸片和计算机断层扫描图像进行基于混合量子架构的新型肺癌检测。
肺癌是全球第二大常见癌症,给人们的健康带来了巨大挑战。早期检测这种疾病对于改善患者预后和简化治疗至关重要。在这项研究中,我们提出了一种将深度学习(DL)与量子计算相结合的混合框架,以提高利用胸片(CXR)和计算机断层扫描(CT)图像检测肺癌的准确性。我们的系统利用预训练模型进行特征提取,利用量子电路进行分类,在各种指标上都达到了最先进的性能。我们的系统不仅达到了 92.12% 的总体准确率,而且在灵敏度(94%)、特异度(90%)、F1 分数(93%)和精确度(92%)等其他关键性能指标方面也表现出色。这些结果表明,与传统方法相比,我们的混合方法能更准确地识别肺癌特征。此外,量子计算的加入提高了处理速度和可扩展性,使我们的系统成为一种有前途的早期肺癌筛查和诊断工具。通过利用量子计算的优势,我们的方法在速度、准确性和效率方面都超越了传统方法。这项研究凸显了混合计算技术改变早期癌症检测的潜力,为更广泛的临床应用和改善患者护理效果铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信