Ji-Yeon Yang, Jeong-Hyun Lim, Soo-Jin Park, Youmi Jo, Si Young Yang, Min-Kyoung Paik, So-Hye Hong
{"title":"Potential endocrine-disrupting effects of iprodione via estrogen and androgen receptors: evaluation using in vitro assay and an in silico model","authors":"Ji-Yeon Yang, Jeong-Hyun Lim, Soo-Jin Park, Youmi Jo, Si Young Yang, Min-Kyoung Paik, So-Hye Hong","doi":"10.1186/s13765-024-00932-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study was conducted to provide evidence, using in vitro and in silico testing methods, regarding the adverse effects of iprodione, a representative dichlorophenyl dicarboxamide fungicide, on the endocrine system. In the present study, we used the HeLa9903 stably transfected transactivation assay (OECD TG 455), 22Rv1/MMTV_GR‒KO androgen receptor transcriptional activation assay (OECD TG 458), and toxicity prediction using VEGA QSAR. Our results showed that iprodione had no estrogen receptor antagonistic or androgen receptor agonistic effects; however, iprodione was determined to be an estrogen receptor agonist (log PC<sub>10</sub> value is less than − 9) and androgen receptor antagonist (log IC<sub>30</sub> value is − 4.58) without intrinsic toxicity against the human cell lines used in this study. VEGA QSAR was used to evaluate five substances with structures similar to that of iprodione. Among them, four chemicals were found to have positive androgen receptor and aromatase activities and have been observed to be developmental toxicants. These results suggest that iprodione regulates steroid hormone receptor interactions and is a potential reproductive toxicant.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00932-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00932-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study was conducted to provide evidence, using in vitro and in silico testing methods, regarding the adverse effects of iprodione, a representative dichlorophenyl dicarboxamide fungicide, on the endocrine system. In the present study, we used the HeLa9903 stably transfected transactivation assay (OECD TG 455), 22Rv1/MMTV_GR‒KO androgen receptor transcriptional activation assay (OECD TG 458), and toxicity prediction using VEGA QSAR. Our results showed that iprodione had no estrogen receptor antagonistic or androgen receptor agonistic effects; however, iprodione was determined to be an estrogen receptor agonist (log PC10 value is less than − 9) and androgen receptor antagonist (log IC30 value is − 4.58) without intrinsic toxicity against the human cell lines used in this study. VEGA QSAR was used to evaluate five substances with structures similar to that of iprodione. Among them, four chemicals were found to have positive androgen receptor and aromatase activities and have been observed to be developmental toxicants. These results suggest that iprodione regulates steroid hormone receptor interactions and is a potential reproductive toxicant.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.