{"title":"An AI-Enhanced Multipath TCP Scheduler for Open Radio Access Networks","authors":"Wenxuan Qiao;Yuyang Zhang;Ping Dong;Xiaojiang Du;Hongke Zhang;Mohsen Guizani","doi":"10.1109/TGCN.2024.3424202","DOIUrl":null,"url":null,"abstract":"Multipath transmission technology has recently emerged as a crucial solution to address bandwidth resource constraints and uneven load distribution across access points caused by the surge in data-intensive applications. A well-designed multipath scheduler can improve the quality of service and balance the power consumption in evolving Open Radio Access Networks (O-RANs). However, wireless channel instability and RAN heterogeneity challenge the scheduler’s bandwidth aggregation capability. This paper introduces a Neural Aggregation Bandwidth Optimization (NABO) scheduler for O-RAN, combining bandwidth prediction with scheduling policy optimization. NABO employs an innovative approach by first constructing a Transformer-optimized Throughput (ToT) prediction model based on historical path characteristics. To train the model, we design a system to simulate various network conditions and collect datasets. This model is then integrated into a dual-network collaborative learning framework that combines ToT predictions with heterogeneity levels to guide the scheduler’s optimization process. The ToT model achieves a throughput prediction error of less than 2%. In numerous heterogeneous simulation scenarios and real-world wireless environments, NABO significantly outperforms state-of-the-art multipath transmission methods, with bandwidth aggregation improvements of approximately 51% and 30% over existing benchmarks, respectively. These findings demonstrate NABO’s superior efficacy and potential in enhancing the performance and energy efficiency of O-RANs.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"910-923"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10587019/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Multipath transmission technology has recently emerged as a crucial solution to address bandwidth resource constraints and uneven load distribution across access points caused by the surge in data-intensive applications. A well-designed multipath scheduler can improve the quality of service and balance the power consumption in evolving Open Radio Access Networks (O-RANs). However, wireless channel instability and RAN heterogeneity challenge the scheduler’s bandwidth aggregation capability. This paper introduces a Neural Aggregation Bandwidth Optimization (NABO) scheduler for O-RAN, combining bandwidth prediction with scheduling policy optimization. NABO employs an innovative approach by first constructing a Transformer-optimized Throughput (ToT) prediction model based on historical path characteristics. To train the model, we design a system to simulate various network conditions and collect datasets. This model is then integrated into a dual-network collaborative learning framework that combines ToT predictions with heterogeneity levels to guide the scheduler’s optimization process. The ToT model achieves a throughput prediction error of less than 2%. In numerous heterogeneous simulation scenarios and real-world wireless environments, NABO significantly outperforms state-of-the-art multipath transmission methods, with bandwidth aggregation improvements of approximately 51% and 30% over existing benchmarks, respectively. These findings demonstrate NABO’s superior efficacy and potential in enhancing the performance and energy efficiency of O-RANs.