HSADR: A New Highly Secure Aggregation and Dropout-Resilient Federated Learning Scheme for Radio Access Networks With Edge Computing Systems

IF 5.3 2区 计算机科学 Q1 TELECOMMUNICATIONS
Fan Wu;Xiong Li;Jingwei Li;Pandi Vijayakumar;Brij B. Gupta;Varsha Arya
{"title":"HSADR: A New Highly Secure Aggregation and Dropout-Resilient Federated Learning Scheme for Radio Access Networks With Edge Computing Systems","authors":"Fan Wu;Xiong Li;Jingwei Li;Pandi Vijayakumar;Brij B. Gupta;Varsha Arya","doi":"10.1109/TGCN.2024.3441532","DOIUrl":null,"url":null,"abstract":"Open radio access network (ORAN) plays a critical role in modern communication process. The structure that individual devices connect each other via ORAN turns to be a part of smart city. Incorporating with the concept Internet of Things (IoT), cloud-edge-client architecture has been accepted to discuss artificial intelligence (AI) coordinating functions in ORAN. Considering the security for ORAN in critical infrastructure, federated learning (FL) is an effective way to protect the original data on individual devices. However, recent schemes failed to support enough security features. To tackle the problem, we present a new highly secure aggregation and dropout-resilient FL scheme called HSADR which incorporates consortium blockchain and differential privacy to maintain the security environment. Second, we prove that the aggregation process reaches the IND-CCA2 security level, which is the first scheme to complete this goal. Last, experiments show that HSADR withstands common test aspects.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 3","pages":"1141-1155"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633759/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Open radio access network (ORAN) plays a critical role in modern communication process. The structure that individual devices connect each other via ORAN turns to be a part of smart city. Incorporating with the concept Internet of Things (IoT), cloud-edge-client architecture has been accepted to discuss artificial intelligence (AI) coordinating functions in ORAN. Considering the security for ORAN in critical infrastructure, federated learning (FL) is an effective way to protect the original data on individual devices. However, recent schemes failed to support enough security features. To tackle the problem, we present a new highly secure aggregation and dropout-resilient FL scheme called HSADR which incorporates consortium blockchain and differential privacy to maintain the security environment. Second, we prove that the aggregation process reaches the IND-CCA2 security level, which is the first scheme to complete this goal. Last, experiments show that HSADR withstands common test aspects.
HSADR:一种适用于带有边缘计算系统的无线接入网络的新型高度安全聚合和抗病毒联合学习方案
开放无线接入网(ORAN)在现代通信过程中发挥着至关重要的作用。各个设备通过 ORAN 相互连接的结构成为智慧城市的一部分。结合物联网(IoT)概念,云-边缘-客户端架构已被接受,用于讨论 ORAN 中的人工智能(AI)协调功能。考虑到关键基础设施中 ORAN 的安全性,联合学习(FL)是保护单个设备上原始数据的有效方法。然而,最近的方案未能支持足够的安全功能。为了解决这个问题,我们提出了一种名为 HSADR 的新型高安全性聚合和抗辍学 FL 方案,该方案结合了联盟区块链和差分隐私来维护安全环境。其次,我们证明了聚合过程达到了 IND-CCA2 安全等级,这是第一个完成这一目标的方案。最后,实验表明 HSADR 经受住了常见测试方面的考验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Green Communications and Networking
IEEE Transactions on Green Communications and Networking Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
6.20%
发文量
181
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信