Xibiao Li, Lan Jiang, Xiaowei Li, Liangti Qu, Yang Zhao, Jiaqi Wang, Peng Yi, Taoyong Li, Xiangyu Zhang, Jiafang Li
{"title":"Bifunctional Janus Membranes for Multicomponent Contaminated Seawater Separation and Recovery","authors":"Xibiao Li, Lan Jiang, Xiaowei Li, Liangti Qu, Yang Zhao, Jiaqi Wang, Peng Yi, Taoyong Li, Xiangyu Zhang, Jiafang Li","doi":"10.1021/acsami.4c08167","DOIUrl":null,"url":null,"abstract":"Solar-driven interface desalination has emerged as a promising strategy to address the global freshwater shortage crisis. However, the separation and recovery of multicomponent oil-contaminated seawater remain a key challenge. This study reports a novel high-strength Janus photothermal membrane with a unique reverse wettability design. On one side, the membrane has hydrophilic and oleophobic properties, while on the other, it has hydrophobic and oleophilic characteristics. The Janus membrane demonstrates dual functionality: solar desalination and oil–water separation. This dual functionality enables efficient separation and recovery of four components from contaminated seawater: purified water, salt crystals, light oil, and heavy oil. As a result, the Janus membrane achieves an evaporation rate of 2.06 kg m<sup>–2</sup> h<sup>–1</sup> under 1.0 sun. The ion (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, and Mg<sup>2+</sup>) removal rate approaches 100% with nearly complete recovery of salt crystals. Furthermore, various types of oils can be accurately separated, with separation efficiency approaching 100%. An integrated separation device successfully separates and recovers the four components. This research presents significant potential for efficient separation and recovery of complex components in oil-contaminated seawater.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"65 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c08167","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven interface desalination has emerged as a promising strategy to address the global freshwater shortage crisis. However, the separation and recovery of multicomponent oil-contaminated seawater remain a key challenge. This study reports a novel high-strength Janus photothermal membrane with a unique reverse wettability design. On one side, the membrane has hydrophilic and oleophobic properties, while on the other, it has hydrophobic and oleophilic characteristics. The Janus membrane demonstrates dual functionality: solar desalination and oil–water separation. This dual functionality enables efficient separation and recovery of four components from contaminated seawater: purified water, salt crystals, light oil, and heavy oil. As a result, the Janus membrane achieves an evaporation rate of 2.06 kg m–2 h–1 under 1.0 sun. The ion (Na+, K+, Ca2+, and Mg2+) removal rate approaches 100% with nearly complete recovery of salt crystals. Furthermore, various types of oils can be accurately separated, with separation efficiency approaching 100%. An integrated separation device successfully separates and recovers the four components. This research presents significant potential for efficient separation and recovery of complex components in oil-contaminated seawater.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.